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Abstract

Despite all the effort devoted to generating locomotion algorithms for bipedal walkers, robots are still far from reaching
the impressive human walking capabilities, for instance regarding robustness and energy consumption. In this paper,
we have developed a bio-inspired torque-based controller supporting the emergence of a new generation of robust and
energy-efficient walkers. It recruits virtual muscles driven by reflexes and a central pattern generator, and thus requires
no computationally intensive inverse kinematics or dynamics modeling. This controller is capable of generating energy-
efficient and human-like gaits (both regarding kinematics and dynamics) across a large range of forward speeds, in a 3D
environment. After a single off-line optimization process, the forward speed can be continuously commanded within this
range by changing high-level parameters, as linear or quadratic functions of the target speed. Sharp speed transitions
can then be achieved with no additional tuning, resulting in immediate adaptations of the step length and frequency. In
this paper, we particularly embodied this controller on a simulated version of COMAN, a 95 cm tall humanoid robot. We
reached forward speed modulations between 0.4 and 0.9 m/s. This covers normal human walking speeds once scaled to the
robot size. Finally, the walker demonstrated significant robustness against a large spectrum of unpredicted perturbations:
facing external pushes or walking on altered environments, such as stairs, slopes, and irregular ground.
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1. Introduction conducted successfully using this indicator, for example
with ASIMO (Chestnutt et al., 2005) or with the HRP-2
platform (Kaneko et al., 2002).

However, there are several shortcomings related to these
ZMP-based bipedal controllers, notably energy inefficiency
(Dallali, 2011). Furthermore, the generated pattern gaits
look quite unnatural (low waist position, permanent knee
bending, feet kept parallel to the ground, etc.) and the
resulting walking speed is typically much slower than that
achieved by a healthy human displaying the same mor-
phology (Kurazume et al., 2005; Sardain and Bessonnet,

Mobile robots hold the promise of better integration of
robotics into our everyday life. However, they are usu-
ally restricted to environments adapted to their mobility.
Humanoid robots offer an interesting perspective in this
context, since their body, which roughly similar to our own,
is potentially perfectly adapted to our world, designed for
humans (Schaal, 2007). In addition, they offer the possi-
bility to manipulate tools designed to comply with human
dexterity, so that these tools do not need to be adapted
for the robot (Fitzpatrick et al., 2016). This is particularly
appealing in contexts where the robot is expected either to
take over a human laborious duty or to co-work in synergy

with human operators.

Nowadays, these robots skills are still far from reach-
ing the level of the human ones, thus preventing them from
being used routinely. This is especially true regarding loco-
motion. The most popular methods developed to achieve
dynamic walking rely on the zero-moment point (ZMP) as
an indicator of gait feasibility (Vukobratovic and Borovac,
2004). The ZMP can then be used to generate walking
patterns guaranteeing dynamic stability at every moment
during the gait. Many locomotion experiments have been
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2004). In particular, ZMP-based controller synthesis usu-
ally requires to avoid singular configurations, thus prevent-
ing the leg to reach full extension during the stance phase
(Kurazume et al., 2005). This has a direct impact on the
energy consumption, since a bent knee requires a torque
to be maintained, in order to balance the body static and
dynamic forces. Some contributions however managed to
address this problem (Ogura et al., 2006).

Another concept frequently used to achieve dynamic
walking is the inverted pendulum model (IPM). In its most
basic version, the IPM models the biped as a single point
mass with contact forces acting at the feet level, in order
to produce desired motions for the center of mass (COM).
The IPM can then possibly be used to control the ZMP
(Faraji et al., 2014a,b). The linear inverted pendulum (LIP)
is a special case of the IPM where the point mass is
constrained to move in a plane of constant height (Razavi
etal., 2017).

The limit cycle walking concept relaxes the need to guar-
antee the local stability at all times of the gait. It treats
the gait as a limit cycle and investigates its global sta-
bility (Hobbelen and Wisse, 2007). (Quasi-)Passive walk-
ers are successful implementations of this concept (Collins
and Ruina, 2005; Hobbelen et al., 2008; McGeer, 1990).
Although they display human-like gait patterns and require
zero (or little) energetic consumption, they are usually lim-
ited to very controlled environments, since they usually
lack control variables to modulate the gait or to resist
perturbations like obstacles or collisions.

Another avenue to explore the limit cycle walking con-
cept is through the development of so-called bio-inspired
walkers. Here, bio-inspiration means that the principles
governing the design of the walker’s body and/or controller
rely on concepts identified in humans. In particular, the
seminal paper of Geyer and Herr (2010), further extended
in Song and Geyer (2015), developed a bipedal model
being actuated by a human-like neuromuscular model.
Using reflexes to drive these muscles, they could reproduce
human-like walking patterns and leg kinematics, and pre-
dict muscle activation patterns similar to human walking
experiments. In addition, the simulated viscoelastic proper-
ties of these virtual muscles provided robustness to external
perturbations.

This approach was further extended to provide realis-
tic motions of 3D animated characters (Geijtenbeek et al.,
2013; Wang et al., 2012). Interestingly, part of this model
was also adapted to control a powered ankle—foot pros-
thesis (Eilenberg et al., 2010), thus further enhancing the
bio-inspired framework. In Van der Noot et al. (2015a),
we brought this controller to a real humanoid robot. When
external assistance was provided to the lateral balance, the
robot was capable of walking on a treadmill.

However, the reflex rules developed in Geyer and Herr
(2010) do not feature modulation capabilities, for instance
regarding the control of the forward speed. Song and

Geyer (2012) solved this limitation by optimizing the many
parameters of this controller to reach different forward
speeds. Large speed variations requested then to run addi-
tional optimizations to find new parameter modulations
between pre-optimized walking gaits.

An alternative bio-inspired gait modulation strategy
requires the addition of a central pattern generator (CPG).
CPGs are neural circuits capable of producing rhythmic pat-
terns of neural activity without receiving rhythmic inputs.
They feature valuable properties such as distributed control,
redundancies handling, and locomotion modulation using
simple control signals (Ijspeert, 2008).

While locomotor CPGs were identified in many verte-
brates, their involvement in human locomotion is still a
matter open to discussion (Dimitrijevic et al., 1998). Yet,
computational models showed that CPGs could play a major
role in human locomotion. For instance, Taga (1994) could
adapt the locomotion of a bipedal model on uneven ter-
rains, using CPG modulation. Aoi and Tsuchiya (2005)
could achieve robust walking with a biped robot by recruit-
ing nonlinear oscillators, both in numerical simulations and
with a hardware platform. In Dzeladini et al. (2014), a CPG
was added to the controller of Geyer and Herr (2010), in
order to act as a feedback predictor and, then, to modu-
late the forward speed. This provided an interesting imple-
mentation of Kuo’s framework for combining feedback (i.e.
reflexes) and feed-forward (i.e. CPG) pathways in the con-
trol of a periodic task (Kuo, 2002). In Paul et al. (2005),
a neuromuscular model used a CPG as central element
to investigate the effects of a spinal cord injury on loco-
motor abilities. Importantly, modeling efforts investigating
the potential role of CPG in human locomotion ubiqui-
tously display their complex intertwining with feedback
mechanisms (Rossignol et al., 2006).

In the present contribution, we embrace the idea of com-
bining a CPG and reflexes in a neuromuscular torque-
based controller for bipedal locomotion. More precisely, we
design a controller capable of generating robust and human-
like locomotion gaits on a 3D bipedal walker. In particular,
forward speed modulation is achieved through the adap-
tation of some high-level parameters, i.e. mainly the CPG
inputs. Preliminary results of this controller (i.e. limited to
the 2D sagittal plane) were already published in Van der
Noot et al. (2015b).

This paper is divided as follows. In Section 2, the walking
controller is extensively detailed. Then, Section 3 presents
both the simulation environment and the robotic platform
that was used for embodying our controller, namely COm-
pliant huMANoid (COMAN), a 95 cm tall humanoid robot.
The controller is further extended in Section 4, in order to
achieve forward speed modulation. The resulting gait fea-
tures are analyzed in Section 5, while Section 6 evaluates
the robustness of the controller when walking blindly in
perturbed environments. Finally, Section 7 concludes the

paper.
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Fig. 1. The purpose of the neuromuscular controller is to provide torque references 7, to the biped joints when receiving sensory
information from the biped state. On top of that, high-level commands are provided by the user as linear or quadratic functions of a
scalar input: the speed reference v,or. Then, the interplay between the CPG and the reflexes provides stimulation signals Sy, They are
later converted into activations 4,, controlling the virtual Hill-type muscles. These muscles finally produce forces F;, converted into

the joint torques via lever arms. The biped embodiment used in this contribution tracks the desired torques 7, by feeding the actuators

with appropriate voltages V. The actual torques t,,,;, combined with the external forces, drive the time evolution of the biped state,

eventually resulting in locomotion.

2. Controller design and architecture

Our controller is expected to provide torque references for
all the joints of a bipedal walker. These torque references
are computed from a bio-inspired approach: they derive
from forces being produced by virtual muscles. These mus-
cles are in turn “activated” by receiving appropriate stimu-
lations. The coordination of these stimulations is governed
by a CPG central unit. Importantly, this paper reports the
successive increments performed while designing this CPG
network, in order to generate the stimulation patterns gov-
erning different walking features. Combining these stimu-
lations with virtual reflexes, robust and efficient gaits can be
obtained after an optimization of the many parameters con-
trolling both the reflexes and the CPG. The different mod-
ules developed in this controller, together with the biped
embodiment, are summarized in Figure 1.

2.1. Neuromuscular model

The investigated joints configuration is provided in Fig-
ure 2. This configuration fits that of the COMAN robot
(Tsagarakis et al., 2013), which served as embodiment for
our experiments (see Section 3.1). This joint configuration
is quite ubiquitous in humanoid robots, so that the proposed
controller should be adaptable to many other humanoid
robots.

To drive these joints, the robot recruits (virtual) muscles.
This approach is directly inspired by the paper of Geyer and
Herr (2010) and is outlined below. Different muscle groups
are identified in each body part, and correspond to muscles
of the actual human leg anatomy: 27 different types of mus-
cle groups are recruited to actuate the 23 joints of the biped,
as reported in Figure 2.

More precisely, each muscle group is computed as a set
of equations, called the Hill muscle model (Hill, 1938) and
pictured in Figure 2¢. Each muscle tendon unit (MTU) con-
sists of two main elements: a contractile element (CE) and a
series elastic element (SE). Two additional passive elements
further engage when the muscle state is outside its normal
operation range: the parallel elastic element (PE) and the
buffer elasticity element (BE). The length [,,;, of each MTU
is computed by geometrical relationships involving the joint
angles and the MTU attachment points. The length of CE
I, 1s integrated based on /,,, and on the muscle activation
A,,, which is detailed later. Then, the deformation of SE
(i.e. the length I, computed as I, = Ly — Ice), provides a
direct computation of the force F,, generated by the muscle.
Finally, this force F,, is multiplied by the muscle lever arm
r, to generate a torque contribution to the corresponding
joint. For bi-articular muscles (i.e. GAS and HAM in Figure
2a and b), a single muscle provides two torque contributions
with two different lever arms. The full implementation of
these equations can be found in Appendix B.

In sum, this musculoskeletal model provides joint torques
through virtual muscle forces and attachment points. Thus,
instead of directly controlling the torques, we rather control
each MTU through input signals called muscle activations
Ap,. They are related to neural inputs S, called stimulations,
using a first-order low-pass filter capturing the excitation—
contraction dynamics (see Figure 1 and Appendix B.2). The
following sections detail how the stimulations S, of each
muscle are computed.

2.2. Frequency and phasing signal construction

Our controller uses both CPG signals and reflexes to drive
the muscles. The combination between these two types of
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Fig. 2. To actuate the biped’s 23 joints, the controller recruits 27 different Hill muscle models (c) acting in different planes. These
muscles are commanded by a combination of reflex signals and the CPG central unit. Muscles acting in the sagittal plane are displayed
in (a) and (b), those affecting the lateral plane are displayed in (d), and finally, those acting in the transverse plane are depicted in (e).

See the text for further details.

signals mainly follows a proximo-distal gradient. In other
words, muscles close to the hips are mainly controlled by
CPG signals (feed-forward), whereas those close to the feet
are mainly driven by reflexes (feedback) (Dzeladini et al.,
2014). This builds upon the rationale that distal muscles
are more impacted by external perturbations such as ground
interactions (Daley et al., 2007).

Our CPG is designed as a 12-neuron network of Mat-
suoka oscillators (Matsuoka, 1985, 1987). These are bio-
inspired artificial oscillators, capturing the mutual inhibi-
tion between half-centers located in the spinal cord. They
also have interesting properties. Indeed, they feature stable
limit cycles, have a low computational cost and are easy
to integrate with sensory feedback signals. In this contri-
bution, the CPG network is divided into two main parts
(see Figure 3). The first is in charge of providing the main
frequency and phasing of the gait cycle. Its neurons are
denoted with a number (from 1 to 4) and are called “rhythm

generator” neurons (RG). The second layer relies on the RG
neurons to generate signals shaping the patterns of muscle
stimulations. The corresponding neurons are denoted with
a letter (from A to H) and are called “pattern formation”
neurons (PF). This two-layered division is inspired by the
two-level CPG biological structure proposed by McCrea
and Rybak (2008). In that contribution, the authors report
several experiments of fictive locomotion in the decere-
brated cat that can be reproduced with this particular CPG
architecture.

During the gait cycle, the strike impact is a crucial
moment where the load is quickly transferred from one
leg to the other. Simultaneously, a large effort is requested
from the new stance leg to prevent the torso from collaps-
ing forward, as a result of this large impact. Therefore, it is
critical for the CPG network phase to be synchronized with
the foot strike, so that it provides large stimulations right
after impact. During the following loading response, the
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leg leaving the stance phase must also provide significant
effort, in order to propel the body and prepare the swing
phase through proper hip flexion and foot push-off. Next,
before the following strike, hip moments are less signifi-
cant in both legs. Indeed, the stance leg already absorbed the
main shock and only needs to maintain the torso orientation,
whereas the swing leg mainly relies on ballistic motion. As
a consequence, it is convenient to divide the gait cycle into
four stages. Two stages are triggered by foot strikes from
both legs, whereas the two others approximately start during
mid-stance. This decomposition is similar to the high-level
control states presented in Yin et al. (2007) or in Wang et al.
(2012).

The CPG RG part is thus constructed with four neu-
rons, one for each stage. More precisely, we use four fully
connected Matsuoka neurons (Matsuoka, 1985, 1987). This
structure is displayed in Figure 3a.

The Matsuoka equations governing this CPG are detailed
below. Each neuron N; main state is captured by its so-called
firing rate x;. Its evolution with time is governed by

1
i = (=% = By = Y nebal +u) (1)

where t is the time constant for the rate of discharge, v; is
the self-inhibition modulated by an adaptation constant S,
and u; is the external input.

Finally, the connection strengths n; govern mutual inhi-
bition, i.e. the fact that the activation of a given neuron
decreases when another is active. It is captured by the func-
tion [e]T = max(0, e), so that only positive firing rates are
considered for inter-neuron inhibition. The self-inhibition
state variable is governed by

b= (vt [l @)
i T
whose time constant is related to that of Equation (1)
through the adimensional parameter y;.

In (1) and (2), the index i corresponds to the neuron
index, whereas the gains B, nx, and the neurons x; are speci-
fied in Figure 4. Finally, y; takes the same index as f;. These
equations are fully developed in Appendix C.

Interestingly, the time constant t is inversely propor-
tional to the CPG frequency. This provides useful access
for modulating the gait frequency.

Regarding phase locking, different models exploited the
capacity of CPGs to achieve entrainment, i.e. to synchro-
nize their firing pattern with stimulations generated by the
actuated body and/or its environment. In particular, Aoi
et al. (2010) developed a locomotor CPG model to achieve
bipedal locomotion, also by recruiting a two-level CPG bio-
logical structure (i.e. combining RG and PF networks). In
this model, phase resetting was applied to the RG layer,
based on foot-contact information. CPG entrainment was
also achieved using Matsuoka oscillators. For instance, in
de Rugy and Sternad (2003) and Ronsse et al. (2009),
this mechanism was investigated for uni- and bi-manual

5.0 B

(a) Rhythm generator (RG)  (b) Pattern formation (PF)

Fig. 3. The central pattern generator (CPG) network is built by
assembling two types of components: (a) the rhythm generator
(RG) part (four fully connected Matsuoka neurons) and (b) a pair
of pattern formation neurons (PF) driven by the RG neurons. The
vertical symmetry corresponds to the left/right legs symmetry.

PF

Fig. 4. Full central pattern generator (CPG) network: inter-neuron
excitations are indicated with an empty circle, whereas plain cir-
cles represent inhibitions. The “rhythm generator” neurons (RG,
shaded) affect the “pattern formation” neurons (PF), but not vice
versa. The network vertical symmetry produces motor commands
for both body sides (legs and arms). The neurons’ main con-
tributions are as follows: N{j_4), thythm generator and upper-
body control; Ni4 gy, knee bending and torso sagittal stabilization;
N{c,p), hip flexion; Nig ry, torso lateral stabilization; NG g, late
swing leg retraction. The corresponding muscular activations are
highlighted with plain circles in Figure 2. The full CPG equations
are provided in Appendix C.

upper-limb movements, whereas Paul et al. (2005) and Taga
(1994) investigated locomotion. Here, a similar mechanism
generating short excitations modulations at foot strike is
used. Basically, all the excitations u; consist in a tonic exci-
tation of ¥ = 1. Then, if a neuron N; is too slow (i.e. not
firing while the corresponding phase already started) or too
fast, its excitation u; is shortly modulated as reported in
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Fig. 5. Time-evolution of the 12 neurons’ firing rates of Figure 4
over one gait cycle (0 % and 100 % correspond to right foot strikes,
the dashed line corresponds to left foot strike). These signals are
obtained during one typical gait cycle of the locomotion resulting
from the controller used in most of the results of this paper (called
reference controller), with a speed reference of 0.65 m/s.

Appendix D. Combining it with the time constant T modu-
lation, this guarantees that the CPG and the walker display
the same frequency, while staying in phase with feet strikes.

The four RG neurons Ny, N,, N3, and N, are the central
elements of the whole CPG network in Figure 4. Their typi-
cal firing rates temporal evolutions are pictured in Figure 5.
In the following sections, this network is incremented with
the PF neurons.

2.3. Leg sagittal stance control

The four RG neurons network determines the CPG fre-
quency and phase synchronization. In order to send appro-
priate stimulations to the muscles, this network is further
incremented with pairs of PF neurons. These receive inputs
from the RG neurons but not the other way round. This
is achieved with the unidirectional structure displayed in
Figure 3b.

To generate the CPG contribution to a particular muscle
stimulation S,,, the different CPG outputs y; are computed
as detailed in Appendix E.1. They mainly consist of extract-
ing the positive firing rate of a PF neuron x; (i.e. y; = [x;]7).

Then, the CPG contribution to a particular stimulation is
computed as S,, = Y_ k; y;, where k; is a gain.

As mentioned earlier, fast hip muscle reactions are
required after strike impact to prevent the torso from col-
lapsing forward. This is provided by the gluteus (GLU)
and hamstring (HAM) muscle groups. Therefore, neurons
being aligned (i.e. firing at the same time) with the N, and
N, neurons of the RG structure are requested, so that they
can quickly fire right after strike. This is the purpose of the
two neurons N4 and Np (see Figure 4). They are in charge
of providing the requested stimulation patterns. In order to
keep them aligned with NV, and N,, similar weights are used
for the self and mutual inhibitions, as well as for the time
constant gains. As can be seen in Figure 5, their firing sig-
nals (x4 and xp) are indeed well aligned with x; and x;, as
expected.

After the strike impact absorption, reflexes are activated
at the hip level to maintain the torso sagittal lean angle 6,
close to a reference 6,,r. The requested muscles are the hip
flexor (HFL) and GLU muscles. As proposed in Geyer and
Herr (2010), this is performed by a proportional—derivative
(PD) control of the lean angle error, App = O — ;.
This signal generates a stimulation to one of the two antag-
onist hip muscles, i.e. one muscle receives a stimulation
proportional to [App]™, the other to [App]~ (With [e]™ =
— min( e, 0)). This reflex can however send contradictory
signals to those generated by the CPG. To avoid this, an
inhibition mechanism ruled by the CPG was implemented
(see Appendix E.1).

The remaining leg sagittal muscles are distal, namely
soleus (SOL), tibialis anterior (TA), gastrocnemius (GAS),
and vasti (VAS) muscle groups. They are mainly controlled
by similar reflexes as those reported in Geyer and Herr
(2010). Most of them either combine a positive constant
prestimulation (Sy) with positive/negative force feedbacks
(F*/7), or a local positive length feedback (L*). On top
of that, the VAS reflex is inhibited when the knee exceeds
a given threshold to prevent over-extension; or during the
double support phase of the leg entering in swing phase, in
order to allow knee flexion.

All the reflexes mentioned in this section are only acti-
vated during the stance phase, i.e. when the ground reaction
force (GRF) vertical component under one foot is larger
than an arbitrary threshold (here, 20 N). The full sagit-
tal stance control is presented in Figure 2a. Further details
about its implementation can be found in Appendix E.

2.4. Leg sagittal swing control

Because swing leg motion is less affected by external per-
turbations, its control mainly relies on feed-forward stimu-
lations provided by the CPG. First, hip flexion is achieved
by sending appropriate stimulations to the HFL muscle.
This activation already starts in late stance, usually a bit
after the contralateral foot strike, and spans during early
swing. Therefore, the CPG network is augmented with a
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new pair of PF neurons: N¢o and Np. As expected, their
corresponding firing rates x¢ and xp fire slightly after the
contralateral leg strike (see Figure 5).

Approximatively at the same time, knee bending is
achieved through proper HAM muscle activation. Prelim-
inary results showed that it was actually not necessary to
add a new pair of PF neurons to control it. Indeed, the cor-
responding stimulations usually need to be aligned with the
existing neurons N4 and Np. Consequently, we decided to
directly shape the corresponding stimulations based on the
x4 and xp neurons’ firing rates.

After this initial high activity, swing mainly relies on the
leg ballistic motion. Therefore, most muscles only receive
the basic tonic stimulation. Regarding reflexes, only TA still
receives a similar local positive length feedback (L™) as that
introduced by Geyer and Herr (2010), in order to increase
foot clearance with the ground.

In the late swing phase, the swing leg motion is reduced
by the combined action of HAM and GLU, participating
into leg retraction. This is achieved with a new pair of PF
neurons: Ng and Ny. In contrast to other PF neurons, this
new pair is connected to RG neurons N and N,, so that they
are mainly aligned with N3 and Nj.

The sagittal swing control described in this section
is summarized in Figure 2b. Its full implementation is
described in Appendix E.

2.5. Leg non-sagittal control

Regarding the leg control in the lateral plane, the gait cycle
is only divided into two phases: the supporting and non-
supporting phases. A leg supporting phase starts with the
leg’s own strike and finishes with the contralateral leg strike.
In other words, it corresponds to its stance phase shortened
by the terminal double support phase.

During the supporting phase, the hip abductors (HAB)
and adductors (HAD) muscles are mainly in charge of con-
trolling the torso lateral lean angle W,. Similarly to the
stance hip control in the sagittal plane, a pair of PF neurons
is required to provide a first excitation to the new supporting
leg, and prevent the torso from collapsing sideways. This is
achieved by the neurons pair Ny and Np, acting on the HAB
muscles.

After the leg first impact, a closed-loop (i.e. reflex-based)
PD controller is in charge of maintaining the torso lean
angle W, close to a reference W,.,. Similarly to what was
done in the sagittal plane, the CPG can inhibit the PD con-
trol contribution on the HAB muscle. This inhibition is
triggered according to the CPG phase, to prevent contradic-
tory signals between the CPG and this balance controller.
In Song and Geyer (2013), a similar PD controller was pro-
posed for the whole stance (i.e. no CPG signal is used).
The introduction of the CPG first burst allows the PD con-
trol parameters governing the balance dynamics to be tuned

only after shock absorbance. Indeed, closed-loop angle con-
trol appears inappropriate during the double support phase,
when the weight is transferred from one leg to the other.

Lateral hip control during the non-supporting phase is
inspired from the approach described in Yin et al. (2007)
and used in Song and Geyer (2013). Basically, an active
swing foot placement is implemented based on A, the
lateral position of the COM, relatively to the supporting
foot. First, a hip lateral reference position ¢y, is com-
puted as the output of a PD controller on A.,,,. Then, a
second PD controller tracks this reference position with the
hip lateral position ¢; , by sending appropriate stimulations
to the HAB and HAD muscles.

Regarding lateral foot control during the supporting
phase, the eversion (EVE) and inversion (INV) muscle
groups are in charge of maintaining the body upright by
bringing the lateral COM close to a reference position.
Again, a simple PD feedback control is applied on Ay,
i.e. on the same input as that used to compute the hip lateral
reference ¢, of the contralateral leg. During the non-
supporting phase, EVE and INV control the foot lateral
orientation to keep it aligned with the horizontal, in order
to prepare proper foot landing. The full leg lateral control is
presented in Figure 2d.

Finally, the hip transverse joint is controlled by the hip
external (HER) and internal (HIR) rotator muscle groups.
The generation of straight motion simply requires to main-
tain this joint in its homing position. Our control is illus-
trated in Figure 2e. All the non-sagittal control rules are
fully detailed in Appendix E.

2.6. Upper-body control

Upper-body control is less critical during walking. In fact,
preliminary experiments revealed that freezing the upper-
body joints would not prevent stable walking from being
achieved. However, this resulted in slower gaits, with higher
energetic consumption in the lower limbs.

The rationales governing upper-body motion in uncon-
strained human walking is still not clear either. For instance,
Collins et al. (2009) explored whether the extra cost
required to swing the arms could lead to potential benefits in
the lower limbs. These experiments showed that voluntarily
holding the arms required 12 % more metabolic energy.

Consequently, our controller also implements arm swing
motion in the sagittal plane. More precisely, the shoulder
flexion (SFL) and extension (SET) muscles are stimulated
by appropriate CPG neurons, in order to be in phase with the
gait cycle. For the sake of simplicity, the RG neurons were
directly used to drive the corresponding muscles. Note,
however, that extra PF neurons might further be added for
the upper body, in a similar way as for the lower body. Here,
SFL and SET stimulations are designed to be in phase with
the contralateral leg motion.
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The other arm muscles are the elbow extension (EET)
and flexion (EFL) muscle groups, the shoulder abduc-
tion (SAB) and adduction (SAD) muscle groups, and the
shoulder internal (SIR) and external (SER) rotation mus-
cle groups. They are all controlled with a simple feedback
controller to maintain a constant position.

Similarly to the arms swinging motion, the four RG neu-
rons are used to control the torso transverse joints with the
back rotation right (BRR) and left (BRL) muscle groups.
The remaining torso muscle groups, i.e. back tilt right
(BTR) and left (BTL), back flexion (BFL), and extension
(BET), use again PD control on their respective joints to sta-
bilize the homing position. All these rules are summarized
in Figure 2 and fully described in Appendix E.3.

2.7. Walk initialization

Walk initiation requires the walker to move its COM on top
of one of its feet. This is achieved with the muscle con-
trol scheme proposed in Heremans et al. (2016). Basically,
a full-body compliant force controller uses virtual feed-
back forces applied to the COM to generate appropriate
torques at the joint level (Hyon et al., 2007). Then, the mus-
cle model presented in Appendix B is inverted to obtain
the corresponding muscle stimulations. This controller only
requires the horizontal coordinates (Xj,;; Yini) of the tar-
get COM position. These coordinates are optimized as
presented in Table 1.

Once the COM is above the desired foot, this COM con-
troller is deactivated and replaced by the main controller
described in this contribution. However, to guarantee that
the CPG quickly converges towards its correct state, special
excitations are applied during the first 0.2 s of the gait (see
Appendix D). Similarly, special stimulations are sent to the
HAB and HAD muscles to help initial lateral hip control
(see Appendix E.1).

2.8. Optimization

In the controller development, we introduced many param-
eters requiring proper tuning. They are all listed in Table
1 with their respective bounds. In this contribution, this
tuning was performed through an optimization phase rely-
ing on a particle swarm optimization (PSO) algorithm
(Kennedy and Eberhart, 1995).

More precisely, each set of optimized parameters was
tested with a biped walking during a maximal time of 60 s.
After this duration (or earlier if the walker fell), a staged
fitness function was computed. This means that different
objectives are sorted by order of relevance, such that the
next objective is taken into account only when the previ-
ous one nearly reaches the maximum score. Each fitness
stage is limited between 0 and 100. They are described in
the following.

The first stage requests the biped to walk a minimum
distance of 15 m, providing a reward proportional to the

distance traveled before falling. The main purpose of this
stage is to prevent the walker from staying in its initial
upright position. After completion of this objective, a sec-
ond stage requires the biped to walk without falling during
the 60 s simulation time, the fitness being proportional to
the walked time.

Once this objective is reached, the speed is later opti-
mized to match a reference. The corresponding objective
function is

£ =100 =" 3)

where f is the stage objective function, x the parameter to
be constrained (here, the speed), x* is the reference, and o
is a weight (set to 100 for this speed stage). This function
output is thus bounded between 0 and 100 and presents a
bell-shaped profile around the reference x*.

When the biped speed is in a range of 0.05 m/s around
the target speed, the last three stages are activated in par-
allel. The first minimizes the equivalent metabolic energy
consumption in virtual muscle contraction per unit dis-
tance walked. This energy is computed as detailed in
Appendix B.3. The fitness stage is computed again with
Equation (3) where « is set to 1073, x* to 0, and x is
the metabolic energy consumption of both legs per unit
distance walked and normalized by the walker mass. The
purpose of this stage is not to minimize the actual elec-
trical energy consumption of the robot, but rather to emu-
late energy-saving mechanisms that are likely taking place
in real human walking. Indeed, the minimum metabolic
energy per unit distance traveled is considered as a valid
measure of walking performance, in order to reproduce
the salient features of normal gaits (Anderson and Pandy,
2001).

The RG neurons in the CPG network offer a prediction of
when the next strike will happen (i.e. when x; or x; will start
firing). To encourage the emergence of solutions minimiz-
ing this prediction error, the mean error between the CPG
predicted strike times and the actual ones is computed. The
second parallel optimization stage uses Equation (3) again,
with o set to 250, x* set to 0, and x set to the mean of this
prediction error.

Finally, to avoid lateral leg inter-penetration, the lateral
distance between foot strikes of both legs is also opti-
mized. More precisely, the shorter distance between a strike
foot position of one leg and the line passing through the
last two strike positions of the other leg is computed. The
third parallel fitness stage is computed proportionally to
the average of this distance, saturating the fitness to 0 for
9 cm and to 100 for 14 cm. Importantly, some of the
numerical parameters presented here depend on the walker
embodiment, in this case the COMAN robot presented in
Section 3.1.

To promote the emergence of solutions with good foot
clearance with respect to the ground, obstacles were placed
below the swing foot during the optimization. More pre-
cisely, these obstacles were trapezoidal shapes located next
to the stance foot. Their height linearly increased with
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Table 1. The parameters to be optimized in the controller and their ranges. The speed-dependent parameters are computed as follows:
T = Ky + Ly v + Mo v3; kpap = Kuup + Luag ve + Mpapvii kire = Kurp + Lirr ves koru,t = Keru, + LoLu,i ve
kiramn = Kpam, 1 + Liaam 1 ves kpam2 = Kgam 2 + Laam 2 v« +Mpam 2 vi; krpam 3 = Kpam 3 + Laam 3 vss Oref = Ko + Lo vs;
Avefh = Kap + Lapve +Mpy vi, where vy = vyr — 0.65 and vy, is the target forward speed. When only a single speed was
optimized, all the terms related to v, and vﬁ were removed. On top of that, the remaining speed parameters (i.e. labeled as K, ) received

a higher range, close to the bounds of the vertical axes of Figure 7. The parameters optimized for the reference controller are provided

in Extension 1.

min  max min  max min max min  max min  max
B Ne 4 6.5 Kpam .1 2 3 Mp j 0 0.3 ka A h 0.1 04
Ba 5 6.5 ny 2 4 Kpamp 0.4 1 reflex (s) kp.o.h 35 55
Bp | 3 4.5 ng 3 4.5 Kram 3 0 0.1 Gsor, 0.85 1.05 ka . 02 05
Be 25 5 Ny 3.5 5 Ky 0.18 0.25 GsoL.14 0.3 1 kpw s 12 18
Ba | 4 6.5 n; 3.5 5 KA p 0.04 0.09 Grasw 1.5 4 kaw g 0.5 1
Be 3 4.5 nj 3.5 4.5 Ly -0.04 -0.01 Gy 5 1.5 25 kpAf 70 120
y Nk 3.5 5 Lyup -1 0.4 GGas 0.2 0.8 ka A f 10 20
Ya 2 4 0y 2.5 3.5 Lyry, 2.5 4 Grus 25 35 Apery | 0.03  0.06
Vp 2 3.5 Nm 3 4 LGLua 0.2 1.5 IT4,5w 0.8 09 init
Ye 25 55 const Lyam 3 7 IT4,5¢ 0.55 0.65 Tt in 0.1 0.4
Yd 1 2 kGLu 0 0.15 Lyamp -1.3 -0.3 Ol th 0 0.3 T, in 0 0.3
Ye 25 4 W, ref 0.03  0.05 Lyam 3 -0.35 -0.2 kpo 4 10 Sst,in 06 1
n speed Lo 0.2 0.35 ka g 02 0.8 Ssw,in 0 0.5
Na 35 6 K+ 0.078 0.085( Lap -0.04 0.06 reflex (1) Xinit 0.03 0.07
np 45 7 Kyup 1.4 2.2 My -0.08 0 kp w 10 15 Yinit 0 0.03
Ne 35 55 Kprr 3.5 6 MpuB -1.5 0 kqw 1.5 25 upper
N4 55 17 Keru,i 2.5 3.5 Mpam 2 1 3 kp A 1 2.5 kiorso 0.07 0.11

the simulation time from 0 to 4 cm. Consequently, foot
clearance progressively improved when walking a longer
distance.

Finally, some noise was added to the muscle stimula-
tions during optimization. More precisely, the noise poten-
tial amplitude was set to 5% of the stimulation instanta-
neous amplitude, similarly to the signal-dependent noise
observed in real human signals (Faisal et al., 2008). This
noise was combined with that applied to the motors (see
Section 3.2). To cope with this uncertainty, each set of
parameters was evaluated three times in a row for each opti-
mization. The average fitness value was used, so that more
robust controllers were obtained.

3. Embodiment and simulation environment

To test the controller presented in Section 2, the COMAN
robotic platform was used as embodiment. This robot
and its controller were developed in a simulation envi-
ronment reproducing the articulated body dynamics, the
ground external forces, as well as the robot motor dynamic
equations.

3.1. COMAN platform

The COMAN platform is a 23 degrees of freedom full-body
humanoid robot. This 95 cm tall robot, weighting 31 kg,
was developed at the Italian Institute of Technology (IIT)

(Dallali et al., 2013; Tsagarakis et al., 2013). COMAN is
pictured in Figure 2, along with the reference frames used
in the rest of this contribution to describe its kinematics and
dynamics. All sagittal joints, as well as the transverse torso
and the lateral shoulder joints, feature series elastic actua-
tors (SEAs) (Tsagarakis et al., 2009). The other joints are
actuated using traditional, stiff actuators.

Regarding the robot sensors, each joint features posi-
tion encoders, along with custom-made torque sensors.
The torque tracking is then mainly achieved with a
proportional—integral (PI) controller, as presented in
Mosadeghzad et al., (2012). On top of that, an inertial mea-
surement unit (IMU) is attached to the robot waist. Finally,
custom-made six-axis force/torque sensors are placed
below the ankle joint to measure the ground interaction
forces and torques.

3.2. Simulation environment

The simulation suite we used to model COMAN is called
Robotran (Docquier et al., 2013; Samin and Fisette, 2003).
It is a symbolic environment for multi-body systems
developed within the Université catholique de Louvain
(UCL). Its direct dynamics module was used to generate
the symbolic equations of the robot dynamics. To further
minimize the gap between simulation and reality, particu-
lar attention was paid to the actuator dynamics, the signal
noise, and the environment external forces, in particular
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the ground contact model (GCM). Moreover, we only used
sensory signals available on the real robot (see Section 3.1).

The actuators model was implemented as reported in
Dallali et al. (2013) and in Zobova et al. (2017). To control
them in simulation, we implemented a low-level controller
similar to that outlined in Mosadeghzad et al. (2012). To
comply with a realistic noisy environment, a uniform noise
with a maximum amplitude of 0.4 Nm was added to the
actual torque measured in the simulation environment (see
also Van der Noot et al., 2015a). This corresponds to the
noise level obtained from measurements with the real plat-
form. Consequently, the torque references computed by the
controller developed in Section 2 were not directly applied
to the multi-body system joints (see Figure 1). Indeed,
they were affected by the motor dynamic equations and
their sensory noise, as would happen on a real robotic
platform.

Regarding external forces, we used two types of custom-
made models: (i) a mesh-based model when comput-
ing the GCM between the feet and the ground; and (ii)
a volume penetration model for all other possible con-
tacts (mainly between the biped body and flying pro-
jectiles, see Experiment 6). They are both described in
Appendix F.

Our simulation environment used a fourth-order Runge—
Kutta integration scheme with a 250 us time step (i.e. 16
evaluations for 1 ms) to compute the dynamics model of
the robot, actuators, GCM, etc. The controller sampling
frequency was equal to 1 ms. When tested on a quad-
core Intel® Core™ i7-4790 CPU, 3.6 GHz, and 16 GB
RAM (using a single core), an average time of 307 ms was
required to simulate 1 s.

4. Towards a single controller for a large range
of forward speeds

The controller developed so far is capable of walking
straight in a 3D simulation environment. In this section,
this controller is incremented in order to achieve forward
speed modulation, through the development of four experi-
ments. First, the gait main features are analyzed for a set of
walkers optimized for a single speed. Then, the key param-
eters governing gait adaptation are studied. The controller
is later incremented to generate speed adaptations and to
investigate the resulting gait features. Finally, forward speed
modulations are actually reported.

4.1. Experiment 1: gait features changing as a
function of the speed

The evolution of the following gait features is analyzed,
based on the forward speed: (i) the metabolic energy
consumption; (ii) the stride frequency; and (iii) the stride
length. To do so, 11 speed references are investigated,
corresponding to the range [0.4;0.9] m/s with a step of

0.05 m/s. Ten optimizations are performed for each inves-
tigated speed, resulting in 10 different sets of optimized
parameters, due to the heuristic of the PSO algorithm
(Kennedy and Eberhart, 1995). The resulting controllers
are labeled as the single speed controllers. The mean
and standard deviations of their metrics are displayed in
Figure 6.

The virtual metabolic energy consumption (Figure 6a, b,
and 6¢) is computed for the right leg muscles, as detailed
in Appendix B.3. Similar values are obtained for the left
leg. As stated in Section 2.6, upper-body control is not the
main focus of this contribution and barely contributes to
the resulting gait. Therefore, its energy consumption is not
studied.

The reported energy is actually normalized to the traveled
distance. Interestingly, its value decreases with the robot
forward speed. Sagittal muscles have the highest metabolic
consumption, since they are the main muscles used to pro-
pel the body forward. However, the lateral muscle con-
sumption is of the same order, due to the important efforts
requested at the hip level during the stance phase. Surpris-
ingly, transverse muscles energy consumption is also of
the same order, while their only purpose was to keep the
leg straight. The reason is that important gains are used
for the corresponding PD controller, generating high co-
contraction. A possible improvement would be to optimize
these gain parameters.

Regarding the stride analysis (Figure 6d and e), an
increase in the forward speed results both in an increase
of stride frequency and length. This is coherent with human
analysis: faster walking speeds usually correspond to faster
walking frequencies and longer step lengths (Murray et al.,
1966). For slow speeds, the evolution of the stride frequency
is less significant than that of the stride length. This indi-
cates that the optimizer favors stride length modulation over
frequency modulation for slow speeds.

4.2. Experiment 2: speed key parameters

Following the proximo-distal hypothesis (Daley et al.,
2007), speed modulation is mainly performed by the leg
proximal muscles, i.e. those close to the hip. In particu-
lar, the introduction of a CPG is useful for this purpose,
since it modulates the locomotion by simple control signals
(Ijspeert, 2008). This section investigates which control
parameters could play a significant role in forward speed
modulation.

Step frequency is directly related to the CPG frequency,
which can be modulated using the time constant 7. Indeed,
this value is proportional to the Matsuoka oscillators period
(Taga et al., 1991). As reported in Section 2.8, the CPG
frequency is optimized to match the gait resulting in closed-
loop frequency. Other potential parameters for speed mod-
ulation include the CPG amplitude output signals. They
are controlled by the gains kwrr, koru,i, keruo, keami,
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kpiane 25 ki 3, and kyyp multiplying the CPG outputs (see
Appendix E.1).

Moreover, faster speeds usually involve larger torso tilt,
as reported in Song and Geyer (2012). Therefore, the tar-
get torso angles 6, (sagittal plane) and W, (lateral plane)
are also good candidates for modulating the forward speed.
Finally, the lateral swing foot placement (being controlled
by the parameter A,.r;) might also be dependent on the
speed. Therefore, all these parameters are studied for speed
modulation.

The influence of these 11 key parameters on the walk-
ing speed was analyzed as follows. An optimization was
performed for a single speed of 0.65 m/s, i.e. in the mid-
dle of the target speed range of Figure 6 ([0.4;0.9] m/s).
Then, all the optimized parameters were frozen, except the
eleven key parameters mentioned above. The speed range
was discretized with a step of 0.05 m/s. For each target
speed (including 0.65 m/s again), 10 optimizations were
performed, initiating the gait with the 11 key parameters
corresponding to the initial speed (0.65 m/s), before switch-
ing to new ones after four steps. The evolution of these
optimized parameters is reported in Figure 7 (except for the
target speed of 0.4 m/s, which did not produce suitable gaits
in this experiment).

Intuitively, the evolution of most of these key parameters
with forward speed can be approximated with polynomial
functions, whose orders have to be properly selected to

capture the curve without over-fitting. To do so, a model
goodness-of-fit analysis using the sum of squared val-
ues of the prediction errors (Smith and Rose, 1995) was
performed, as detailed in Appendix G.

Resulting p-values are presented in Table 2. The corre-
sponding null hypothesis is that the model fits the data. Its
rejection (i.e. too small p-value) indicates an overall lack of
fit regarding the order selected for regression. Fixing and
arbitrary threshold to 0.1, the lowest order with a p-value
exceeding this threshold was selected as being appropriate
for the fit. This is a less strong analysis than rejecting the
opposite null hypothesis, but is considered to be sufficient
to design the control rules.

Interestingly, these results are close to those reported in
Van der Noot et al. (2015b). In this earlier contribution, sim-
ilar graphs were obtained when restricting the walker to stay
in the 2D sagittal plane, while exploring the evolution of a
subset of six of the key parameters.

As expected, the time constant 7 decreases (and so the
frequency increases) with higher speeds. This correlation
obeys a parabolic trend, while we reported a linear one in
two dimensions (Van der Noot et al., 2015b). On top of
that, the corresponding frequencies are larger in three than
in two dimensions, for the same speed references. This is
due to the lateral balance, which is easier to maintain with
shorter step durations. In addition, variations of t are larger
for higher speeds. This indicates that the optimizer favored
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2, using the minimum mean square error method.

step length modulation for slow speeds and step frequency
modulation for higher speeds. This is coherent with the
observations made in Experiment 1.

During the stance phase, kgry1 and kgap,1 were both
recruited to bring the torso back to its reference inclination
after foot strike. This requires higher stimulations at higher
speeds, due to larger inertia effects and strike impacts. This
explains why these gains increase with higher speeds. Note
that Table 2 reports that the polynomial fits did not reach
significance for kgzy,1. Since this parameter is redundant
with kz4ar,1, this was considered to be not critical. For this
parameter, we arbitrary chose a polynomial approximation
of order 1. In the lateral plane, kz45 is sightly larger in the
middle of the speed range, indicating a stronger torso lateral
stabilization for the corresponding speeds.

During the early swing phase, hip flexion increases for
higher speeds. Consequently, the HFL muscles receive
higher stimulations (with kyp; increasing) while their
antagonist muscles HAM receive lower stimulations (with
krapm 2 decreasing). In late swing, kgry2 and kpq3 are
used to favor leg retraction, which reduces the walking
speed. This explains why kp4ys3 decreases. However, no
significant modulation is observed for kg.y/ 2, probably due

to its redundancy with kgy4y3. Globally, the CPG output
modulation conveys similar conclusions as those we drew
in the 2D case (Van der Noot et al., 2015b).

Regarding reflexes, the torso sagittal lean angle refer-
ence 0, increases linearly with speed, as in Van der Noot
et al. (2015b). Its lateral reference W,.r, however, does
not display a significant modulation, due to its high vari-
ance. Finally, the COM reference A, driving the lateral
swing hip is minimal in the middle of the speed range.
This is coherent with the ky4p evolution. Indeed, a higher
kr4p generates a higher momentum, accelerating the COM
towards the swing leg (Patla et al., 1999). To counter it, the
swing foot must be placed further away, inducing a smaller
Aref,h-

4.3. Experiment 3: a single controller for the
whole speed range

The controller design can now be further extended to gen-
erate any forward speed in the [0.4;0.9] m/s range. The
11 key parameters studied in Experiment 2 are replaced
by polynomial functions whose order is chosen according
to Figure 7 and Table 2 (except for kgru1). Because the
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Table 2. Polynomial approximations of orders 0, 1, and 2 of the
data provided in Figure 7, based on the least-squares errors. Each
p-value is then computed as detailed in Appendix G. The first
order with a p-value larger than 0.1 is then selected (gray cells).

Order 0 Order 1 Order 2 Selected
T 0 0.002 0.968 2
kHrL 0 0.211 0.218 1
kGLu .1 0 0.002 0.015 %
kGLu 2 0.115 0.099 0.293 0
Orer 0 0.463 0.649 1
krian 1 0 0.32 0.517 1
kram 2 0 0.022 0.169 2
kram 3 0 0.146 0.528 1
2% 0.2 0.159 0.727 0
kyap 0 0.028 0.162 2
Avef 0 0.063 0.958 2

modulation of kg y» and W, are actually of order 0, the
corresponding parameters are constants. The speed mod-
ulation is then fully achieved with nine parameters: seven
CPG parameters and two reflex parameters, as a function of
the target speed (see Table 1). The four initial steps are per-
formed with a speed reference v,s set to 0.65 m/s, in order
to achieve walk initialization. Then, v,,s can be changed to
any value in the speed range, at any moment in the gait. This
high-level control is depicted in Figure 1.

New optimizations were thus performed with the whole
range of forward speed being embraced within a single trial.
More specifically, 11 target speeds were selected (from 0.4
to 0.9 m/s with a step of 0.05 m/s). Then, the same opti-
mization process as described in Section 2.8 was performed
to find the whole parameters set (including the coefficients
capturing the modulation of the nine parameters changing
as polynomial functions of the forward speed). More pre-
cisely, each optimization received this whole parameter set
and a range of target speeds v, to test (see Table 1). The
resulting fitness value was computed as the average of all
the fitness functions of each tested target speed. This co-
optimizes all the parameters within a single optimization,
leading to more efficient gaits and larger speed ranges than
those presented in Figure 7.

Ten heuristic optimizations were performed using this
approach. They resulted in 10 different sets of optimized
parameters. The 10 corresponding optimized controllers
(called adaptive controllers and capable of reaching any
forward speed in the [0.4;0.9] m/s range) were evaluated

similarly to the so-called single speed controllers (i.e. con-
trollers optimized for a single speed) from Experiment 1
(see Figure 6).

Since no parameter was optimized in the transverse
plane, the corresponding energetic consumption was sim-
ilar for the single speed controllers and the adaptive ones.
In the other planes, the single speed controllers turned out
to be more efficient than the adaptive ones. However, given
that the adaptive controllers were optimized for a large
range of speeds in a single shot and not tuned for a precise
gait, this small pay-off regarding energetic cost seems a rea-
sonable price to pay. Regarding step size analysis, the sin-
gle speed controllers favor higher frequencies and shorter
steps than the adaptive ones. However, these differences are
rather small.

The standard deviations in Figure 6 are usually larger
for the single speed controllers than for the adaptive ones.
This indicates that the gaits (and underlying parameter
sets) resulting from different optimizations are more simi-
lar when optimizing the whole range of forward speeds in a
single trial. Globally, the sagittal energetic consumption and
the step frequency display the highest deviations (relative
to their respective ranges) between different optimizations.
However, the global evolution of all these features with
the speed remains close between the different optimization
runs. Thus, while in principle there could have been mul-
tiple local minima in the search space, the optimizations
tended to converge to similar optimal parameter sets and
resulting gaits.

4.4. Experiment 4. forward speed modulation

Among the adaptive controllers of Experiment 3, we select
one of them and refer to it as the reference controller. In
the rest of this contribution, we only report results that
were obtained with this controller (i.e. corresponding to the
same set of optimized parameters in the whole paper). This
controller is available in Extension 1.

The forward speed of the robot can be controlled on-line
by adapting the speed reference v,,r. The speed modula-
tion achieved with the reference controller on COMAN is
visible in Extension 2 and in Figure 8.

In this experiment, the target speed is modulated in the
full range, i.e. from 0.4 to 0.9 m/s. The resulting speed
(post-processed with a running average of 1 s) can fol-
low this reference with accelerations up to £0.25 m/s%.
This represents less than two strides to go from one speed
extremum to the other.

5. Comparisons with an inverted pendulum
controller and with human data

The gait obtained from this neuromuscular controller can be
compared with both human data and to gaits resulting from
more traditional controllers, typically using inverse kine-
matics or dynamics transformations to compute position or



Van der Noot et al.

181

speed (m/s)

(a) Forward speed modulation

02 snapshots
—= target speed
0.0 — actual speed
0 10 20 30 40 50
time (s)

(b) Target speed tracking

Fig. 8. (a) Snapshots of an experiment where the robot forward speed is modulated. (b) Tracking of the target speed v,.r (dashed line),
where the robot actual forward speed (solid line) is post-processed with a running average of 1 s. The time interval during which the

snapshots of (a) are taken is also displayed. A video of the corresponding experiment is provided in Extension 2.

torque references at the joint level (Fitzpatrick et al., 2016).
Therefore, the gait of our reference controller is compared
with that resulting from a more traditional LIP controller
and to human data. These comparisons are performed on
kinematics and dynamics data in steady state. Correla-
tions between our muscles activations and surface elec-
tromyography signals (EMG) extracted from human data
are also reported. Finally, comparisons to the LIP-based
controller are further extended by analyzing the energetic
consumption.

5.1. Experiment 5: steady-state gaits
comparisons

Among the controllers relying on inverse modeling, we
selected that reported in Faraji et al. (2014b). In that paper, a
LIP-based torque controller could achieve gait modulation
on the simulated COMAN. Using the same embodiment as
ours offers to make direct comparisons with our own results
(labeled neuromuscular). Importantly, this LIP-based con-
troller generates slower gaits than those obtained with our
neuromuscular model. Therefore, these comparisons are
not ideal but remain valuable to providing a benchmark
comparing our controller with more traditional approaches.

To compare these results with human measurements, we
use the data from Bovi et al. (2011). In that contribu-
tion, measures were performed on 20 adult subjects. This
includes the temporal evolution of joint positions, torques,
ground contact forces, and EMG signals. We selected the
data set with subjects walking at their natural (i.e. uncon-
strained) speed.

The average speed of the 20 adult subjects in Bovi et al.
(2011) was equal to 71.36 %BH/s, where BH stands for
body height. Considering that COMAN height would be
close to 1.06 m if it had a head, this corresponds to a
speed of 0.75 m/s. Therefore, data for the neuromuscu-
lar controller was extracted from our reference controller
walking with this reference speed. The LIP-based controller
of Faraji et al. (2014b) is not capable of reaching such a

high speed. Consequently, the data presented from its result-
ing gait were obtained when walking close to its maximal
speed, i.e. 0.31 m/s. It should also be noted that the LIP-
based controller does not include a model of the electrical
actuators, therefore bypassing the noise component intro-
duced in Section 3.2. The following sections report different
measurements performed on this experiment.

5.2. Kinematics and dynamics

The position and torque profiles extracted from Experi-
ment 5 are displayed in Figure 9, where the data obtained
with COMAN (i.e. the LIP and neuromuscular controllers)
were averaged over 20 consecutive gait cycles (right leg).
We computed the cross-correlation coefficient between
each controller gait and the human data shifted in time.
More precisely, we tested 100 time shifts equally spaced
between 0% and 100% of the gait cycle. Here, we report the
maximum of these cross-correlation coefficients, namely
R and the corresponding time shifts A as a percentage of
stride (Wren et al., 2006).

The sagittal joint kinematics globally shows good match-
ing for the neuromuscular model (ankle: R = 0.8, A =
—9%; knee: R = 0.95, A = 0%; sagittal hip: R =
0.97, A = 0%), although this is lower for the ankle than
the hip and knee. This might be due to the rigid foot used
on our model, different from the human one. Indeed, in
Colasanto et al. (2015), replacing the robot rigid foot by
a model of a human prosthesis led to more robust gaits.
This is a possible future improvement for our experiments.
The lateral hip kinematics corresponds to a low correla-
tion (R = 0.57, A = —35%). However, the corresponding
human motion is rather small and displays a large variance.
Therefore, this low correlation is more difficult to interpret.

The correlations obtained with the LIP-based controller
are systematically lower than with the neuromuscular con-
troller, in the sagittal plane (ankle: R = 0.32, A = —40%;
knee: R = 0.87, A = —6%; hip: R = 0.93, A = 0%) and
significantly better in the lateral plane (hip: R = 0.93, A =
—5%). In particular, there is a large offset in the sagittal
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Fig. 9. Kinematic and dynamic profiles of Experiment 5: the human data from Bovi et al. (2011) (natural speed) is compared with
our neuromuscular controller (0.75 m/s) and with the LIP-based controller (0.31 m/s) from Faraji et al. (2014b). The averages of the
different measures are displayed over one gait cycle (starting at right foot strike), augmented by their standard deviations (shaded areas).

ankle and knee angles. This behavior (bent knee walk-
ing) is typical of most humanoid gaits. The main reason
is usually related to the deterioration of their controllers
in configurations involving a singularity (Kurazume et al.,
2005).

Interesting observations can also be reported from the
torque cross-correlations. For the neuromuscular controller,
the matching is good for the sagittal ankle and lateral
hip joints, but not for the two other joints (ankle: R
0.92, A = —5%; knee: R = 0.24, A = 82%; sagittal hip:
R = 0.53, A = —3%; lateral hip: R = 0.89, A = 5%).
The ankle plantar flexion is also of smaller magnitude. As
mentioned previously, this might also be due to the lack of
compliance in the foot being simulated.

The lower correlations for sagittal knee and hip are also
observed in Geyer and Herr (2010). Human knee torque
mainly oscillates around the zero axis during the stance
phase. This is also the case in our model, although this
oscillation is similar in anti-phase. In Figure 9b, a small
knee flexion is observed after strike, only for human data.
To prevent from collapsing, humans thus apply an initial
extension torque. In our model, the opposite happens: heel
strike is followed by a slight knee over-extension, counter-
acted by a flexion torque. Regarding the sagittal hip, the
main difference is the larger extension torque after strike,
to prevent the torso from collapsing. However, it should be
noted that other contributions reported human data display-
ing a similar large extension torque (Riener et al., 2002;
Zelik and Kuo, 2010). This is likely highly dependent on
the location of the hip center of rotation, which might also
explain our own results. Yet, these bumps usually do not
exceed 0.8 Nm/kg, indicating that our first hip reaction is
above any human data.

The LIP-based controller torques show similar correla-
tions with human data, except for the sagittal ankle (ankle:
R =0.89, A =29%; knee: R = 0.71, A = —19%); sagittal
hip: R = 0.66, A = —1%; lateral hip: R = 0.98, A = 5%).
The ankle torque in the sagittal plane shows a large phase
shift regarding the peak in the stance phase. This is due
to the lack of heel-toe motion and toe push-off. The lower
variances can be explained by the lack of modeling of the
motor dynamics and simulation noise.

Figure 10 shows the vertical GRFs measured during the
same experiments. In particular, human data displays an
M-shaped pattern, i.e. a well-known feature of human walk-
ing gaits. In contrast, the LIP-based controller exhibits a
nearly flat profile during its stance phase, and initiates its
swing phase earlier. In contrast, the neuromuscular con-
troller stance phase is better aligned with human data and
displays oscillations in the GRF amplitude. However, the
corresponding pattern differs from the human one. This
discrepancy is probably due to the use of rigid feet in our
experiment (and so to the lack of damping at strike impact),
in contrast to human feet. Other possible reasons include
the lack of toes, the foot length being shorter than the
human one, and the knee over-extension issue mentioned
previously.

5.3. Muscle activations

Similarly to Geyer and Herr (2010), activations controlling
the virtual muscles (neuromuscular controller) can be com-
pared with real human EMG signals. Figure 11 reports this
comparison for the following muscles: (a, b) soleus, (c, d)
tibialis anterior, (e, f) gastrocnemius medialis, (g, h) vastus
medialis, and (i, j) gluteus maximus.
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Fig. 10. Vertical GRF profiles of Experiment 5 (right leg), nor-
malized to the body weight (BW). Both the LIP-based and neu-
romuscular data are post-processed with a running average of
50 ms.

The SOL and GAS muscle groups feature high cross-
correlations coefficients, although with a significant phase
shift (SOL: R = 0.96, A = —14%; GAS: R = 0.96, A =
—13%). This shift corresponds to the one of Figure 9 for
the joint being controlled by these two muscles, namely
the sagittal ankle. Once again, this might be related to the
lack of compliance in the foot, affecting the push-off phase.
Correlations for the other muscles are typically lower (TA:
R =0.69, A = 58%; VAS: R = 0.7, A = —15%; GLU:
R = 0.76, A = —3%). The stance activations are usually
displaying a reasonable matching. During swing, however,
our virtual muscles are nearly silent because the legs rely on
ballistic motion. This is not the case in the reported human
measurements.

5.4. Energetic consumption

In order to compare the energetic consumption of the neu-
romuscular controller with the LIP-based one, the square
of the joint torques are integrated over one gait cycle.
Figure 12a reports the different joint contributions for the
right leg (the left leg results are identical). As indicated in
Section 2.6, the upper-body motion barely contributes to the
gait and is therefore not included in this analysis. In contrast
to the previous analyses, the measurements were performed
with the neuromuscular controller over its whole range of
forward speeds. The gaits resulting from the neuromuscu-
lar controller are compared to the highest speed (0.31 m/s)
obtained with the LIP-based controller (i.e. same gait as in
Figure 9).

Globally, the neuromuscular controller displays lower
torque profiles than the LIP-based one, when walking
slower than 0.64 m/s. As expected, the LIP-based controller
recruits large torques at the knee level, due to the fact
that this joint stays bent during the whole stance phase.
The neuromuscular model, however, recruits smaller knee
torques, but requires much higher torques at the sagittal
hip joint (increasing with speed). This is coherent with the
observations reported in Figure 9.
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Fig. 11. Muscle activation profiles of Experiment 5: the acti-
vations obtained with COMAN (neuromuscular controller) are
compared with EMGs measured on walking humans (Bovi et al.,
2011). Owing to the high variances of these signals, only their
average is reported. The dashed line reports the transition from
stance to swing.

Torques produced by the ankle in the sagittal plane are
also far less important with the neuromuscular controller,
especially at slow speeds. The hip torque in the lateral plane
are larger with the LIP-based model. Finally, the remaining
joints torques are negligible. In particular, the high virtual
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Fig. 12. Estimate of the energetic consumption of both controllers tested in Experiment 5. (a) The sum of square of the joint torques
for the LIP-based controller (hatched) and the neuromuscular one (non-hatched), both integrated over one gait cycle, i.e. one stride.

The measures were performed on the right leg at different speeds, and averaged over 20 gait cycles. The contributions of each joint
correspond to different colors (see legend). (b) The same result, normalized by the distance traveled during one gait cycle.

metabolic energy consumption of the transverse hip (see
Figure 6¢) does not translate in higher torques.

However, this analysis did not take the traveled distance
into account. In Figure 12b, the same results are displayed,
with a normalization by the stride length. Interestingly, the
total square torque for the neuromuscular model is quite
constant as a function of the forward speed. In particular,
the increase in the sagittal hip torque is compensated by
the extra traveled distance. This analysis strongly penal-
ized the LIP-based controller since its normalized sum of
square torques is about more than twice larger than that of
the neuromuscular controller.

6. Gait robustness

The following section reports experiments with the robot
walking blindly (i.e. with no perception of its environ-
ment), using the reference controller. Its robustness was
tested against external pushes, stairs, slopes, and irregular
ground (on top of the simulator noise). During all these
experiments, no parameter modulation was applied to the
controller.

6.1. Experiment 6: resisting pushes

First, the following experiment was performed. COMAN
received random pushes on the torso when walking at dif-
ferent speeds. These pushes were applied with a magnitude
between 0 and 30 N during 0.2 s in the transverse plane. Ten
pushes were applied with a time interval randomly selected
between 5 and 6 s. Each push orientation in the trans-
verse plane was randomly selected in the | — 77; 7] interval
(i.e. all possible directions selected with an equal probabil-
ity). Robustness was quantified by counting the number of
pushes the robot could sustain without falling.

10 10

force (N)
obstacle maximal height (mm)

04 05 06 07 08 09
speed reference (m/s)

04 05 06 07 08 09
speed reference (m/s)

(a) Pushes on the torso (b) Irregular ground

Fig. 13. For the whole spectrum of speed references, COMAN
faced two kinds of external disturbances. In (a), pushes were
applied on its torso (Experiment 6). The color map represents
the number of pushes the robot resisted (averaged over five
runs) before falling, as a function of the push amplitude. In (b),
COMAN was walking on the irregular ground displayed in Fig-
ure 17 (Experiment 9). The values of the corresponding H; heights
were randomly selected in the range whose maximum value is
reported on the vertical axis. The color map represents the for-
ward distance (i.e. along the x axis (in meters)) COMAN walked
before falling (limited to 10 m and averaged over five runs).

This result is reported in Figure 13a, for the [0.4; 0.9] m/s
speed reference range (with a discretization of 0.05 m/s).
Globally, higher speeds can resist higher pushes. The only
exception is the maximal speed (i.e. reference of 0.9 m/s),
which was less stable. Indeed, less-stable gaits were usually
obtained for the extrema of the tested speed range.

Another illustration of the robot resistance to external
pushes is provided in Extension 3. In this experiment,
COMAN walked with the reference controller at a speed
of 0.65 m/s. During walking, 10 balls with a density of
750 kg/m> were thrown to it. In particular, after absorbing
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Fig. 14. Snapshots from Experiment 7: COMAN walked blindly on an ascending and descending stair. Step length was automatically
adapted to the environment, without changing the controller. At the end of the stair, COMAN retrieved its initial gait, thanks to the

CPG. Extension 4 reports the whole experiment.

Fig. 15. Snapshots of Experiment 8, where the robot faced a slope
(here, 2.58°). It automatically adapted its step length, with no
change in the controller. Extension 5 reports the whole experi-
ment.

a ball push, the walker can recover its previous gait, thanks
to the CPG entrainment (Ijspeert, 2008).

6.2. Experiments 7 and 8: natural adaptation to
stairs and slopes

Experiment 7 established the capacity of the robot to adapt
to ascending and descending (small) stairs. This is pre-
sented in Extension 4, with the reference controller walking
with a speed reference of 0.85 m/s. Snapshots of this exper-
iment are displayed in Figure 14. The corresponding stair is
made of five ascending and five descending steps, each with
a width of 50 cm and a height of 2 cm. This performance is
similar to that of Geyer and Herr (2010), pending a scaling
to our robot size. Interestingly, our controller can even adapt
when its foot lands between two consecutive stair steps, as
can be seen in Figure 14.

Similarly, Experiment 8 tested the robot ability to adapt
to ascending and descending slopes. In Extension 5,
COMAN walks blindly with a speed reference of 0.85 m/s
on a flat ground before facing a rising slope of 2.58°.
Snapshots of this experiment are provided in Figure 15.

Similar results were obtained on the whole speed range,
as reported in Figure 16. There is no global trend for
descending slopes. In general, COMAN can walk on nega-
tive slopes with an angle smaller than —2.29° (—4%). For
rising slopes, a clear correlation appears with the forward
speed. As can be seen in Figure 15, the walker naturally
decreases its step length (and so its speed) when climb-
ing a positive slope. Therefore, a higher initial speed can
withstand larger slopes. With its maximal speed reference,
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slope angle (deg)
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(a) Negative slopes (b) Positive slopes

Fig. 16. Results from Experiment 8: for the whole spectrum of
speed references, COMAN faced ground with slopes of different
angles (from 0° to 4° with a discretization of 0.29°, for positive
and negative angles). The color map represents the distance trav-
eled on the slope (in meters) before a possible fall (limited to 10 m
and averaged over five runs).

Fig. 17. Description of the irregular uneven ground generated for
Experiment 9. Each triangle composing the ground mesh is based
on a rectangle of size d x w with four randomly selected heights
H; at its corners (d = w = 50 cm).

COMAN can climb slopes up to an angle of 2.58° (4.5%).
This is similar to the results reported in Geyer and Herr
(2010).

6.3. Experiment 9: natural adaptation to
irregular grounds

In Experiments 7and 8, the walker robustness was tested
when facing uneven ground with regular patterns (i.e. stairs
and slopes). This experiment quantifies its robustness to
irregular grounds. The description of the corresponding
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ground is presented in Figure 17. Different grounds can
then be tested with randomly selected heights H;.

In Extension 6, COMAN walks on this ground (with a
speed reference of 0.65 m/s), where the H; heights were ran-
domly selected in a range of [0; 25] mm. Figure 13b reports
the result of this experiment over the whole speed reference
range and for different maximum obstacle heights. Simi-
larly to the results of Experiment 6, higher speeds produced
more robust gaits, except for the maximum speed (0.9 m/s),
intrinsically less stable.

7. Discussion

The work presented here offers an alternative locomotion
controller for humanoid robots. The controller can generate
gaits across a range of speeds close to the normal human
walking one, by recruiting virtual muscles controlled by
CPG and reflex signals. By embracing the concept of limit
cycle walking, it relaxes constraints inherent to more tradi-
tional locomotion controllers. In particular, singularity con-
figurations such as stretched legs can be reached, generating
faster and more energetically efficient gaits.

7.1. Interest of the bio-inspired approach

While using (virtual) muscles might seem natural when
working on real human models or on animation charac-
ters, it is less obvious for humanoid robots equipped with
electrical actuators. This paper showed that using muscles
as an intermediate layer offers several interesting proper-
ties: (i) the virtual muscles generate continuous torques,
being smooth to track for the low-level torque controller;
(i) human-like gaits can be obtained by minimizing the
metabolic consumption of these virtual muscles (see Sec-
tion 2.8), in a way likely similar to what humans do; (iii)
this configuration, being similar to that of a human, pro-
vides the ideal framework for comparing our model with
human data, including the level of muscle activations; and
(iv) the walker benefits from the viscoelastic muscle prop-
erties, i.e. human-like joint impedance. Regarding this last
point, the exact effects of the muscular viscoelastic proper-
ties still need to be quantified, which is a potential topic for
follow-up work. Finally, note that minimizing the metabolic
consumption of virtual muscles (point (ii)) is not a pri-
ori equivalent to minimizing the robot’s electrical energy
consumption. However, the same optimization tool could
be used to minimize this electrical energy consumption
(i.e. maximizing the actuators efficiency) by replacing the
metabolic energy measure by the electrical consumption of
the motors. Future work will explore the influence of this
regarding the gait kinematics and robustness.

Experiment 5 further showed that it was possible to dras-
tically reduce the joint torque contributions with the pro-
posed method, in comparison with more traditional con-
trollers. This could potentially lead to important energetic
cost reductions during locomotion. However, this was tested
on two very different speed ranges. More specifically, the

highest speed of the LIP-based controller of Faraji et al.
(2014b) was close to the lowest one of our neuromuscular
controller. Therefore, an alternative approach would be to
use both of these controllers on the same robotic platform,
pending the implementation of a transition mechanism as
a function of the forward speed. In particular, the neuro-
muscular controller is likely more appropriate to quickly
and efficiently reach a desired spot. A controller recruiting
foot step planning would in contrast be more appropriate
when accurate positioning is requested. Alternatively, the
proposed neuromuscular controller could also be extended
to generate slower walking speeds.

Last, but not least, this approach is also advantageous
regarding computational cost. A single iteration of our neu-
romuscular controller (i.e. CPG + reflexes + virtual mus-
cles) requested an average time of 61 us to be computed
(on the same computer as that reported in Section 3.2). This
is more than 16 times faster than the COMAN controller
sampling rate, namely 1 ms. In contrast, many existing loco-
motion controllers use demanding computations of inverse
kinematics and/or dynamics. This often leads to critical
issues to fulfill the real-time constraints.

7.2. Robustness to unperceived environments

Gait robustness is one of the major issues preventing robots
from being used in unknown environments. In particu-
lar, many biped locomotion controllers require an accurate
dynamic model of the robot, resulting in poor robustness
when there are errors in this model. Other approaches, such
as the virtual model control proposed in Pratt et al. (2001)
require however no dynamic model of the robot to achieve
robust gaits during blind walking.

Here, the blind walking experiments performed on the
COMAN platform demonstrated impressive robustness
when walking in perturbed environments. In particular, the
viscoelastic muscle properties commanded by the com-
bined action of the CPG and the reflexes could automat-
ically adapt the gait to various perturbed environments.
Importantly, this was achieved without changing a single
parameter of the controller. A perfect knowledge of the
environment was therefore not requested, which is a key
advantage in order to bring humanoid robots in our natu-
ral day-to-day life. Using the CPG as a central element, the
robot could return to its normal gait after perturbation. This
was particularly outlined in Experiments 6-9.

The controller could be further extended to detect pos-
sible falls and trigger additional reaction primitives. In Li
et al. (2015), an energy-based fall prediction method is pre-
sented for this purpose. Similar strategies could likely allow
the walker to withstand higher perturbations than those
performed in the blind walking experiments.

7.3. Gait modulation

Motion diversity control (e.g. deliberate obstacle avoid-
ance) might be easier to achieve with more traditional
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methods relying on inverse kinematics or inverse dynam-
ics. However, similar motion diversity can also be found
when using neuromuscular models. For instance, Desai and
Geyer (2013) revisited the model of Geyer and Herr (2010)
in order to control the swing leg placement. This model was
further extended in Song and Geyer (2015) to avoid obsta-
cles by increasing the foot ground clearance or the step size.
Similar performances can also be obtained with CPG mod-
ulations, as we reported in Van der Noot et al. (2015b), with
the objective of stepping over a hole.

In this contribution, we showed that the inclusion of a
CPG could modulate the forward speed by adapting nine
key control parameters as linear or quadratic functions of
the target speed. This resulted in high-speed variations, over
a range close to the normal human one, when scaled to the
robot size. Because both the step frequency and length are
adapted, it provides full control of the foot step placement,
in order to avoid small obstacles. However, a high-level con-
troller (see Figure 1) modulating the CPG inputs to generate
desired gait alterations was not explored and is a potential
avenue for future developments.

7.4. Parallels with human locomotion

Experiment 5 showed that this controller could also be
used to investigate models of human locomotion. This was
examined through comparisons with human kinematics and
dynamics measurements, as well as EMG signals. Our con-
troller recruited Hill-type muscle models commanded by
reflexes, and Matsuoka oscillators, which are components
developed on a solid biological background. Our CPG net-
work was divided into two parts: the “rhythm generator”
neurons and the “pattern formations” ones. Using a similar
two-level CPG biological architecture, McCrea and Rybak
(2008) reproduced results observed in experiments of fic-
tive locomotion with decerebrated cats. Our approach also
followed the proximo-distal hypothesis that was verified by
Daley et al. (2007) on avian bipeds. In other words, mus-
cles close to the hip mainly received feed-forward signals
(i.e. from the CPG) while the distal muscles (being highly
load-sensitive) received feedback activations (i.e. reflexes).

Using this structure, the modulations of the CPG fre-
quency and amplitude, together with two reflex parameters,
led to large forward speed variations and step modula-
tion, as shown in Experiments 3 and 4. Thus, similarly to
the work performed by Taga (1994), Paul et al. (2005), or
Rossignol et al. (2006), this contribution also supports the
assumption that CPGs could play a major role in human
locomotion, at least for gait modulation.

Importantly, the recruitment of CPGs to control the walk-
ing of most vertebrates is widely accepted, but the neural
circuitry generating human locomotion is still not entirely
unveiled (Dzeladini et al., 2014; Minassian et al., 2017).
The work of Geyer and Herr (2010), further extended in
Song and Geyer (2015), obtained similar results as ours,

although they implemented only reflex pathways (i.e. with-
out CPG). Therefore, the recruitment of CPG networks
during human locomotion remains a matter open to debate.

While many studies use a deductive approach to under-
stand human locomotion (Lacquaniti et al., 2012), this con-
tribution offers a synthesis approach to test hypotheses on
human walking. In particular, this is potentially valuable to
provide insights about neural and orthopedic disabilities, by
understanding their effects on walking, and thus possibly
contributing to develop new treatments. Yet, it is impor-
tant to note that the musculoskeletal model developed here
is a high-level approximation of control principles found
in human motor control, not an accurate computational
neuroscience model.

Divergence with real human data could possibly lead
to model refinements, with the purpose to better explain
human locomotion mechanisms. For instance, the large
torque peak experienced by the sagittal hip after foot strike
could be reduced by the introduction of a stance preparation
phase. Indeed, this lack of preparation resulted in an insuffi-
ciently damped impact and thus in a large forward torso tilt,
as explained in Geyer and Herr (2010).

Non-sagittal leg control could also be improved by tak-
ing inspiration from human strategies. For example, humans
use the hip internal rotation, even in straight walking. This
advances the swing leg and increases the step length (Stokes
et al.,, 1989). A possible improvement of our controller
would be to integrate this mechanism. In addition, the hip
lateral position could sometimes bring the swing leg too
close to the stance one, resulting in possible collisions
between the legs. In our experiments, this was sometimes
observed at speed extrema and during perturbed walking.
A first naive solution would be to increase the weight of
the fitness stage favoring large lateral distances between
both feet. However, this might reduce the range of achiev-
able speeds. Another solution would be to increment the
lateral hip swing control. Yet, this depends on the walker
embodiment being used.

Muscles coordination during human locomotion is a
complex task due to the large redundancy in the muscu-
loskeletal system (Ting et al., 2012). To solve this over-
actuation problem, human motion control possibly relies on
muscle synergies, i.e. on the covariation of muscle activi-
ties. Synergies virtually decrease the number of degrees of
freedom (Aoi et al., 2010). In our work, muscle synergies
are captured by two factors. First, the number of muscle
groups (mainly inspired from Geyer and Herr, 2010) is
much smaller than the actual number of human muscles.
Second, some synergies are generated by our reflexes and
CPG signals. For instance, the combined activation of the
HAM and GLU muscles in early stance stabilizes the torso.
Yet, other synergies could be explored, in particular if more
muscles were added to the musculoskeletal system.

The controller could also be tested on a model closer
to the human morphology than COMAN. For instance,
the human femoral joint is quite different from the robot
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hip joints. Similarly, feet closer to the human ones could
by used on the robot. In Colasanto et al. (2015), replac-
ing the rigid feet of COMAN by compliant prostheses led
to more robust gaits, when using similar neuromuscular
control rules.

Computer graphics animation is another avenue for the
development of such models, for example through the gen-
eration of motion and torque patterns incorporating biome-
chanical constraints (Wang et al., 2012). Similar neuromus-
cular models are not limited to humans but could possibly
be extended to many biped creatures, as demonstrated by
Geijtenbeek et al. (2013) on an ostrich model.

7.5. Perspectives

A natural extension of the forward speed modulation
approach reported in this paper would be a module govern-
ing steering actions, i.e. changes in the heading direction.
This would make possible to modulate both the heading
direction and the radius of curvature of the biped walker
trajectory, and thus to reach any point in a 3D environment
and to navigate around obstacles.

As detailed in Section 7.4, the controller is valuable to
better understanding human locomotion and to investigat-
ing possible pathologies. However, significant differences
with human data were reported. These divergences could
be more thoroughly investigated to obtain gaits closer to
human ones. This could be done by refining the muscu-
loskeletal model and the neural controller rules, but also by
using a model (instead of a robot) close to the real human
morphology (e.g. with toes and some compliance in the
segments).

Interestingly, the bio-inspired approach developed here
could also be applied to different body types, and even
to extinct species. For instance, computer simulations and
biomechanical modeling are considered as some of the most
rigorous methods to reverse-engineer the gait of dinosaurs.
By combining solid evidence such as the morphology of
their limb skeletons with external and muscular forces, it
is thus possible to reconstruct physically plausible motions
(Hutchinson and Gatesy, 2006). Therefore, neuromuscu-
lar controllers could possibly be adapted to theropod (i.e.
bipedal dinosaurs, such as Tyrannosaurus) gaits.

All the tests performed in this contribution used a faith-
ful simulation model of the COMAN platform (including
its actuator dynamics and noisy torque sensing). There-
fore, the controller has the potential to be tested on a real
robotic device. Similarly to Van der Noot et al. (2015a),
this transfer would require some care regarding the dynamic
non-idealities (e.g. impact, friction, and backlash).

There is increasing interest in bringing humanoid robots
out of the laboratories, as emphasized during the recent
DARPA Robotics Challenge. However, biped locomotion
remains an important challenge, as illustrated during the
terrain task of this contest. Indeed, during the correspond-
ing trials, only 2 of the 16 teams successfully completed

the entire terrain task without requiring an intervention, so
that the walking challenge for the finals had to be simpli-
fied (Johnson et al., 2016). The present contribution does
not target DRC-like tasks, but rather studies the scientific
question of exploring the benefits of human-like muscu-
loskeletal systems, together with their control properties.
This is scientifically interesting, but also potentially valu-
able for robotics locomotion since humans are still much
better than humanoid robots at tackling complex terrains.
Moreover, the leg stretching obtained using our approach
would potentially offer to cross larger obstacles and to
climb stairs with higher steps, in comparison with walkers
displaying continuous knee bending.

While bipedal robots are currently far from the walk-
ing capabilities of real humans in terms of robustness and
energy efficiency, this contribution thus shows that neu-
romuscular controllers hold the potential to make a step
towards this achievement. Indeed, the generated gaits are
closer to the human ones, and so, more adapted to our
surroundings. In the future, robots might be able to adapt
to our environment, rather than us having to adapt our
environment to the robot limited skills.
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Appendix A Index to multimedia Extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type  Description

1 Video humanoid robot tracks a modu-
lated reference speed.

2 Video humanoid robot walks blindly
while impacted by flying balls.

3 Video humanoid robot walks blindly
on stair (ascending, then
descending).

4 Video humanoid robot walks blindly

on an ascending slope.

(Continued)

Table 4. (Continued)

Extension Media type Description

5 Video humanoid robot walks blindly
on an irregular ground.

6 Code Simulation environment with

the controller.

Appendix B Muscle tendon unit

The full muscle model and its biological relevance is
covered in Geyer et al. (2003) and Geyer and Herr (2010).
We report here the steps and equations to implement it.

B.1 MTU kinematics

First, some parameters can be computed from the joint
angular positions ¢, through the lever arm r,, and the MTU
length /.

Each lever arm r,, obeys an equation such as r, =
+7ycos(¢@ — @may). It is thus maximal (and equal to =£rg)
when ¢ is equal to ¢,,,, except for lever arms acting the
hip joint which are kept constant (i.e. r,, = %£rg). The sign
depends on the resulting torque contribution in the frames
of Figure 2.

The MTU length is computed as [ = lopr + Lsiack +
> i ALy, where [, is the CE optimum length, [ga is
the distance corresponding to SE being slack and i is the
joint affected by the muscle (two joints for GAS and HAM,
one otherwise). For the hip: Al = £p70(@ — @),
where p accounts for muscle pennation angles and ¢,.r
is the angle at which /,,, = Il + lgucx. The sign can
be deduced from the muscle length evolution with ¢ (e.g.
positive when [, increases with ¢). For the other joints:
A by = % p ro (Sin( @ — Pax) — sin( Dref — Omax) )-

All parameters used in these equations are reported in
Table 3. All the angle frames are consistent with those
displayed in Figure 2 and equal zero in the homing posi-
tion, i.e. the walker standing straight with the arms hanging
vertically.

B.2  MTU forces

The following equations depend on the muscle state, which
can be represented by a single variable: the CE length /.,
(the other variables can be computed from the kinematics
and from /.. ). In the approach of Geyer and Herr (2010), /.,
is found by integrating its time derivative v... However, this
integration requires a small time step, due to the stiff and
strongly non-linear derivative state equations, which is a
strong issue for a robot controller sampled with a fixed time
step (Van der Noot et al., 2014). A possible solution is to
integrate these dynamic equations with a smaller time step
than that of the controller itself. For example, the controller
of COMAN being sampled with a frequency of 1 kHz, the
following equations were integrated with an explicit Euler
integration scheme sampled five times in a row with a time
step of 0.2 ms.
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Table 3. The fixed MTU parameters of the 27 types of muscles for COMAN. When a leg MTU acts on different joints, they are
explicitly reported as (a) for ankle, (k) for knee, and (h) for hip. The sign £ means positive for the right leg/arm and negative for the
left one. The sign F means the opposite. These values were extracted from Geyer and Herr (2010) for the leg sagittal muscles and from
Song and Geyer (2013) for the hip lateral muscles. Finally, other muscles were estimated with the OpenSim simulator (Delp et al., 2007)

with the human models developed in Arnold et al. (2010) and in Rajagopal et al. (2016). The masses m,;,5, wWere obtained using the

method proposed in Wang et al. (2012), while the A values were obtained from Yamaguchi et al. (1990). These values are scaled to the

size of COMAN by using dynamic scaling methods, as described in Bejan and Marden (2006) and Schepelmann et al. (2012).

Fax Vimax lopl Ltack To Pmax Pref p[-] Mmmny A [%]
[N] [opt/s] [mm] | [mm] [mm] [deg] [deg] L (el
SOL 1415 9 17110 21 20 ~10 0.5 + 240 81
TA 285 18 26, 100 17 ~10 20 07 70 70
GAS 530 18 20170 2@ 20@  —-10@ 07 | 110 54
‘ 20k 40k 15K ‘
VAS 2125 18 4 98 26 15 55 0.7 | 720 50
HAM 1060 18 5 13 20000 0k 0 (k) 07 1 450 44
| 34Mm) - (h) ~25(h) |
GLU 530 18 47 1 56 43 - ~30 0.5 1 250 50
HFL 710 18 47 | 43 43 - 0 05 |, 330 50
HAB 1060 18 3 30 26 - F10 07 404 50
HAD 1595 18 B, 7 13 ; F15 1, 676 57
EVE 375 18 20 1107 13 +10 ¥5 07 1 80 57
INV 480 18 21 128 9 +5 F10 07 |, 100 55
HER 530 18 24 21 17 - £10 08 180 50
HIR 570 18 3, 30 13 - 20 07 | 192 50
BTR 640 18 53 43 49 45 0 o270 50
BTL 640 18 5, B 49 45 0 1, 270 50
BET 1060 18 5100013 23 45 1 540 57
BFL 830 18 48 53 35 40 5 1 390 50
BRR 560 18 47 1 45 15 35 20 1 260 51
BRL 560 18 47 | 45 15 35 —20 1 260 51
SET 180 18 59 38 18 ~70 ~120 0.6 110 )
SFL 525 18 8, 14 30 ~15 07 | 230 57
SAB 810 18 4 1 43 16 80 F60 07 | 350 57
SAD 140 18 59 56 21 20 F155 06 | 80 £
SER 430 18 2o 12 35 0 07 | 140 45
SIR 650 18 39 . 2 12 40 25 07 1 250 58
EET 460 18 53 : 51 10 -25 —60 0.8 : 240 32
EFL 390 18 50 0 72 16 ~70 —60 o190 46

First, the muscle force F, (= Fg, i.e. the force in
the series elastic element SE) is computed from the cur-
rent value of [, (= b — lce): Fee = Fmax( [(lse -
Liac) | (Lsiack e,ef)]Jr)z, where F,, 1s the muscle maximal
force and €,,r (= 0.04) is the reference strain (with [e]" =
max(0,e)). Then, the BE force is computed as follows:
Fpe = Fax( [Lmin — lce]+/( lopt €be) )2 where Ly (=0.44 lopt)
is the BE rest length and €, (= 0.28) is the BE refer-
ence compression. Fy, is the PE muscle force divided by

/v (the force-velocity relationship) and is obtained as fol-
lows: F;e = Fpe/fo = Fnax([lee — lopt]Jr/( Lopt €pe) )2, where
€pe (= 0.56) is the PE reference strain.

Then, the force—length relationship is computed as f; =
exp(cll(lee — lopr) /w|?), where w (= 0.56 lopt) 1s the width
and ¢ (= [n(0.05)) is the residual force factor. Here f;
is finally saturated to a lower bound of 1073, The force—
velocity relationship is computed as follows: f, =(F +
Fpe) /(A Frnax 1 + F ;e), and then saturated between 0 and
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1.5. The muscle activation is 4,,, being computed using the
following first-order low-pass filter: t,, dA,,/dt = S, — A,
where t,, is a time constant of 10 ms and S,, is the muscle
stimulation (see Figure 1). Finally, this allows us to compute
the force of the CE element as F,., = [Fye + Fpe — F;‘eﬁ]*.

Finally, the CE velocity v. is obtained as v, =
_Vmaxl()pt((l - M/ +KR)iff, < 1 and v, =
~Vimax lopt ((fy — 1) /(756 K (f, — N) +1 — N)) otherwise.
In these equations, K (= 5) is the shape factor of £, and
N (= 1.5) is the eccentric force enhancement. All constant
parameters used in these equations are reported in Table 3.

Iterating over all these equations, the value of /., is pro-
gressively updated by integrating v,... Finally, the generated
torque reference is computed as t,.,; = 7., I, (see Figure 1).

To prevent the joints from exceeding a physiological
range, similar joint soft limits to those reported in Geyer
and Herr (2010) are used. Note that these limits do usually
not engage, expect for the knee joint in over-extension.

B.3  Metabolic energy

The model of Bhargava etal. (2004) is used to compute
the virtual muscle metabolic energy. This requires two
additional MTU properties: its mass (1) and the mass
fraction of slow twitch fibres (1), which can be found in
Table 3.

The total rate of energy consumption is computed as
Eviru = Apru+Myru+Syru+Byru+ Wy . The different
terms are detailed below.

The activation heat rate is computed as a function of the
stimulation S,: Ayry = My (40 Asin(Z S,) +133 (1 —
A)(1 — cos( 5 Sy))). The maintenance heat rate Muyru
depends on the activation A4,, and requires to define the
function g(7,.) to model the dependence on the normalized
muscle length lee = Lo /lopi- The function g( 706) is set to
0.5 for I, < 0.5, to I, for 0.5 < I, < 1,t0 21, + 3
for1 < 706 < 1.5 and to 0 otherwise. Then, we compute
Myry = M g(Lee) (TArsin(Z A,)+111(1 = 2) (1 —
cos(§ 4,))).

The shortening heat rate Syru is set to [<0.25F,, ve]T,
the basal metabolic rate BMTU is set to 0.0225m,,, and
the work rate Wy is set to [—FeeVee]". Finally, Eyvry is
simply integrated with time.

Appendix C CPG full equations

The following equations report the time derivatives of the
neurons firing rate. Most parameters are optimized, their
range being provided in Table 1:

o1
xp = —(—x1
T

o
X = ;( —x3 = Bava — nalx11" = ngl3lt — nylxal® +u2)

— Bavi — nalx2l™ — nple3]T = mglxal® +up)

. 1
x3 = ;( —x3 = Bpv3 — el 1T — mglal™ — mplxal® + u3)

. 1
X4 = ;(—X4 = Bova = nglal™ — ngbeal™ — mplx3]™ + us)

= (e — Bava — s T — mglaal — nalasl* + )
Xp = %(—XB — Bave — nglx3]t — nplxal™ — nalxq]™ + up)
ke = (—xc — feve — mbesT" — mlal” — nleo]® +uc)
ip = (~xp — fovp — nils T~ el — nelxcl* + up)

. 1
Xg = ;( —xg — Bave — njlx3]T — milxalt = nalxp]t + up)
. 1
Xp = ;( —xp — Bavr — mlxslt — njlxal™ — nalxel® +up)
. 1
xg = ;( —xg = Bevg — mlx11T — nmlx2l™ = nelxgl™ + ug)
1 + +

xXpg = ;( —xg — Beveg — nm[x11" — nilx2]

— nelxG1T + up)

The fatigue dynamic equations are as follows:

1 o 4
vi=—(—vi+[x1]"); v¢e = —(—vc + [xc]")
YaT YT

. 1 +y. ; 1 +
vy =—(—v+[x]"); vp= (=vp +[xp]™)
YaT YeT

. 1 . 1 +
3 =—(—v3+[x3]"); ve= —(—ve +[xg]™")
YT YdT

1 1
vy = —(—vg+[xal™); vr = —(—vr + [xr]T)
VpT Ydt

. 1 . 1
Vg = —(—va+[x41"); Vg = —(—vg + [x6]T)
YaT YeT

_ 1 1 N
vp = —(—vg +[xg]"); VH‘*( vy + [xg]™)
YaT Vel

Appendix D Excitations modulation

Modulations of the CPG excitations u; are mainly per-
formed to achieve the synchronization between neurons
and foot strikes. In particular, x| is expected to fire (i.e. to
become positive) just after the right strike and x, after the
left strike. Therefore, all excitations u; are set to zero if x; is
positive during the right swing phase or x; is positive during
the left swing phase.

On top of that, x4 and xz are expected to fire after the
right strike, whereas xg and xp should fire after the left
strike. In addition, neurons firing rates are allowed to be
positive only during their corresponding supporting phase
(i.e. stance phase without last double support). Finally,
some neurons are inhibited to prevent the PD control act-
ing on the sagittal torso angle 6, (tracking 6,,) to start
earlier than expected (and similarly for the lateral torso
angle W, tracking W,,r). This is achieved with the following
equations:

wp=u—[ly +xilgr  uc=u—[xlg
wy =u— [y + gy, up=u—[xnlg
ws =u—[x3ly —3lg,,  ue =u—I[xcly
ug = u—[xalfy — alg,p  wm =u—Ixnlgy
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ug = u— [ealyy + bealg, g — Deal Pl — 61179
up = u — [xplgp + 815, — 81 [0 — 0119
up = u — [xplgy + Elg,p — BT [y — Wil g
up = u — [plgp + g, — Drl Wy — T

where u = 1 is a tonic excitation. The function [x]gg is equal
to x during the right leg supporting phase, to 0 otherwise.
The function [x]g; is equal to x during the left leg supporting
phase, to 0 otherwise. The [x]s;- z function is always equal to
zero, except if the firing rate x; is still negative after the right
foot strike. In this case, it is equal to x as long as x; is not
the only positive RG neuron. The function [e]s;.;, is similar
for the left leg and x,. These functions are combined with
the previously defined [o]* and [¢]~ functions. The [e]/,
function returns 1 if its argument is positive, 0 otherwise
(similarly for [e]1)0 with negative arguments). Finally, only
the positive values of all excitations u; are used (i.e. [u;]1).

It should be noted that most of the time, these excitations
are kept to the tonic excitation u. Indeed, their modulations
are usually very short.

Finally, to guarantee that the CPG quickly converges to
its requested state, different excitations are used during the
first 0.2 s of the gait. More specifically, all u; are set to 0,
except uy, up, up, and up (if the right leg is the first to enter
in swing phase) or uy, uy4, uc, and ug (otherwise), which are
setto 1.

Appendix E  Muscles stimulations

The following sections detail the muscle stimulations
implementation. As in Geyer and Herr (2010), time delays
were applied to some reflex inputs, to capture long (%),
medium (#,), and short (#) neural signal delays. Stimu-
lations are further bounded between S);v = 0.01 and
Suax = 1. All parameters to be optimized are reported in
Table 1.

E.1 Leg proximal muscles

The leg proximal muscles (i.e. HFL, GLU, HAM, HAB,
and HAD) are the main ones in charge of adapting the gait
speed.

Based on the CPG firing rates x;, the CPG output signals
y; are computed. Similarly to Van der Noot et al. (2015b),
we use y; = [ [x,]" — [x»]T ]T, where x, is a PF neuron and
x5 a RG neuron directly connected to x,. The [x;,]" contri-
bution purpose is to decrease the output strength when x,
and x; are firing at the same time. However, its influence is
rather small, i.e. y; >~ [x,]*:

ys =[[xg]" —[x]" 1"
vo =[lxr]" —[xa]"1*
y7 =[xt — 1t 1F
yg = [[xu]™ =[xl "1F

yi =[xt = b1t
va=[lxglt —[xq]T 1"
y3 =[[xc]" = [x3] 1"
va=[[xpl" = [x4]T 1T

The muscles stimulations of the proximal muscles (CPG
contribution) are computed as follows:

SGLUR = kGLu Y1 +kGLu,2 v8
Seru,L = keLu,1v2 + kcLu 2 v
SHAM R = kHAM 1 Y1 + kHAM 2 Y2 + kHAM 3 V8

SHam.L = kpam,1 2 + kpamp v+ kpam 3 v
SHFLR = kHFLY4 5 SHABR = kHABYS

SurLL = kurLys 5 SHABL = kHABY6

The following equations are systematically doubled: one
for the right leg and the other for the left leg. To cap-
ture this, we used the {x,y} notation: the first item refers
to the right leg and the second to the left leg. In par-
ticular, {R,L} stands for right or left leg. During the
stance phase, the PD control applied to the torso sagittal
lean angle is computed as follows: Ag r1y =(kpg (Orr —
et( ts) ) _kd,9 et(tv)) ng,{R,L}( ts)a where kpﬂs kdﬂa and Qrcff
are parameters to be optimized. Here 6, is the torso sagittal
lean angle and 6, is its derivative. Finally, F, wd {r.L) 18 the ver-
tical force below the corresponding foot, normalized to the
walker weight. Then, the HFL stimulation is incremented
by [As k] The [Agrpy]~ signal is added to the GLU
stimulation, as long as the condition [y; = 0 and y4 = 0] is
met for the right leg or the condition [y, = 0 and y3 = 0] is
met for the left leg (to prevent contradictory signals between
the CPG and reflexes).

In the following notation, § equals 1 for the right
leg/arm and —1 for the left leg/arm. For HAB and HAD
muscles, additional reflexes are added. The PD control
applied during the supporting phase on the lateral lean
angle is computed as follows: Ay r;y =(kpw (8 Wyer —
V() —kaw Yi( ) Fearpy(t), where k,y, kgw, and
W, are parameters to be optimized. Here W, is the torso
lateral lean angle and W, is its derivative. Then, the stim-
ulation Spp is computed as Sy + [Aw rzy])™/ ). The
[Ay R,L}]H/ -l signal is added to the HAB stimulation, pro-
vided that the condition [ys = 0] is fulfilled for the right leg
or that [ys = 0] is met for the left leg.

During the contralateral leg supporting phase, the
lateral hip reference position is computed as Phiref (RL} =
—Ap,Ah ( -8 Argf,h - Acom,{L,R}( ts)) +kd,A,h Acom,{L,R}( ts)
where k, A, kaap, and A, are control parameters
to be optimized. Here A, is the COM lateral posi-
tion, relative to the left foot, and Awm,L its derivative.
In order to decrease leg inter-penetration, @ r 1S
limited to an upper bound of 7.5° and @ .. to a
lower bound of —7.5°. Then, the PD controller tracking
this hip lateral position is computed as Ajgnrr) =
kpo (PnirerirLy — OhiRL)(Es)) —Kapn OnirLy(ts), where
kpon and kg, are parameters to be optimized. Here
@nirry is the hip lateral position and ¢y 7y is its
derivative. The HAB and HAD stimulations are then
computed as Suaprz) = Suv + [Answrs]™/" and

Staprzy = Suv + [Answirsy] ™7



Van der Noot et al.

195

To support gait initialization, special stimulations are
sent to the HAB and HAD muscles. More specifically, dur-
ing an initial time 7y, ;,, the first leg to enter in the swing
phase receives a stimulation S, ; for the HAB muscle,
while the HAD muscle only receives the minimal stimu-
lation Sy Similarly, during an initial time 7, ;,, the other
leg (first in stance) receives a stimulation Sy ;, for the HAB
muscle and Sy for the HAD muscle. These parameters are
reported in Table 1.

Finally, the leg transverse muscles (i.e. HER and HIR)
are actuated by the following PD controller: A (rr) =
=500 @5 (r 1y () =20 @nrr 1) (1), Where @y rry is the
hip joint transverse position and @, (rz); 1s its deriva-
tive. The corresponding stimulations are as follows:
Suer,(RL) = Swiv + [ Avans (r0y ] and Spir r .1y = Svan +
[Atmns,{R,L}]{-h_]'

E.2  Leg distal muscles

In the sagittal plane, the leg distal muscles (i.e. VAS,
GAS, TA, and SOL) are mainly based on reflexes,
as detailed in Geyer and Herr (2010). The follow-
ing rules hold during stance phase: Sps = Sy +
Gras Fas(tm); Scas = Suiv + Gaas Foas(11); Sta = Suv +
Grast (Leera(t1) =l1ast) —Gsor,ma Fsor(1); Ssor = Smv +
Gsor Fsor(1;). The parameters Gyus, Ggas, Grases Gsor, s
Gsor, and Iy i are optimized. Here F,, is the muscle force
normalized by its maximal force F,,,, and 7,,, is the mus-
cle CE length Icgp normalized by its /,,; value. On top of
this, the VAS muscle is inhibited (i.e. Syys = Syv) when
close to knee over-extension, i.e. when [¢(t,) < ¢4 and
or(ty) < 0], where ¢y is the knee position and ¢y is its
derivative. This inhibition is also applied during the dou-
ble support phase, detected by the CPG firing rate con-
dition [x, > 0.05] (for the right leg) and [x; > 0.05]
(for the left leg). During the swing phase, all leg distal
sagittal muscles only receive Sy, except the TA, which
receives an extra term to guarantee a proper foot clearance:
St4 = Suv + Grasw (lee,za( ) —I74,5), Where Gry 5, and
I14 5w are optimized.

During the supporting phase, the leg foot lateral mus-
cles are activated by a PD controller on the COM
lateral position, i.e. ArgpirLy = kpaf(8 Aperp —
Acom,{R,L}( ts) ) _kd,A,f Acam,{R,L}( ts)- kp,A,f: kd,A,f and Aref,f
are optimized parameters. Corresponding stimulations (i.e.
acting on EVE and INV) are the following: Sgygrr; =
Suv + [Drprp] ™ and Sy = Suv +
[Afpr2y]7 7). During the other leg supporting phase, a
PD controller on the foot lateral orientation is applied as
Arswirty = —kpws Yrrny () —kaw s Yy r0y(t), where
kpwy and k;y; are optimized, W z7y is the foot lat-
eral orientation (relative to the ground) and Wz, is its
derivative. The corresponding stimulations are as follows:
Severiy = Sy + [Arswqrn] T and Sivy g1y = Suw +
[Af,sw,{R,L}]{+’7}~

E.3  Upper-body muscles

Most torso muscles track a constant position reference
qres using the following PD control rule: fpp(grr)=
500 (grr — q) —20¢, where g is the joint position and ¢
is its derivative. Then, the torso muscles BET, BFL, BTL,
BTR corresponding stimulations are as follows: Szer =
Urp.(0)]7, Sprr. = [fep(0°)]F, Sere = [fep(0°)]~
and Sgrr = [fpp,(0°)]". For the remaining torso muscles
(i.e. BRL and BRR), the RG neurons are used to control
the torso transverse joint: Sprr = kiorso [X11T + Kiorso [X3]7;
SRR = kiorso [¥217 + Kiorso [X4]*, where ki is a unique
parameter to be optimized.

Similarly, most arm muscles track a posi-
tion reference ¢,r with the following control:
Jra(qrer)= 5(qrr — ¢q). Then, the resulting SAB,

SAD, SER, SIR, EET, and EFL stimulations are as
follows: Ssuprzy = [fea(—85)1", Ssupryy =
ra( =851, Sserryy = [fpa(87.5°) 101,
Ssimirzy = [fpa(87.5)107), Sper = [fpa(—25°) 1%,
and Sgrr, = [fpa(—25°)]". Finally, the RG neurons
are used to control the arm’s remaining muscles SFL
and SET: Sspririy = kams X021 ]T + Karms [x3 4175
SSET,{R,L} = Karms [x{2,1}]Jr + karms [x{4,3}]+a where karms is set
to an arbitrary value of 0.75.

Appendix F  External forces

Two types of custom-made contact models were used: (i)
the mesh-based one (used for GCM) and (ii) the volume
penetration one.

F1 Mesh-based contact

The mesh-based CGM is very similar to that implemented
in Geyer and Herr (2010) and Song and Geyer (2013).
More specifically, a regular mesh of 20 points is used
under each foot. This number was selected as a compromise
between computational cost and the accuracy of contacts
with uneven grounds (see Experiment 9). Each foot point
can reach three different states: (i) swing state (when it is
not in contact with the ground), (ii) sliding state, and (iii)
stiction state.

Swing state is reached when the point is above the ground
level. In such a case, no force is applied to it. When the
point penetrates the ground, it first switches to the sliding
state. Then, when the point tangential velocity gets lower
than 1 cm/s, the point switches to the stiction state. In this
state, if the tangential force norm ||F7|| exceeds || Fyll
(nse = 0.9 is the static friction coefficient, Fy is the point
normal force), the point goes back to the sliding state.

When in sliding or stiction state, the normal force norm
is computed as ||[Fy| = —k,ny Ay [l — kan Ay]T where
kp v 18 set to 81.5 kN/m and ky v is set to 30 s/m. Here Ay
is the point penetration in the ground along its normal (neg-
ative according to the frames of Figure 2), Ay is its time
derivative.
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During stiction, the vectorial tangential force is com-
puted as Fr = —k, 7 Ar[1+kyrsgn( Ar) vr]T, where k,
is set to 8.2 kN/m, and k; r to 30 s/m. The sgn( e) function
returns 1 when its argument is positive, and —1 otherwise.
The vector Ay contains the two tangential components of
the distance between the point current position and the pre-
vious one when entering in stiction mode. Finally, v7 is the
point tangential velocity.

During the sliding phase, the tangential force is com-
puted as Fr = —ug Fy (vy/llvrll), where g = 0.8 is the
sliding friction coefficient.

E2  Volume penetration contact

This contact model is only used in Extension 3 to com-
pute the contacts between the COMAN body and the balls
thrown to it. The robot body is approximated by two types
of volume primitives: spheres and cuboids. Then, iterating
through the different volume primitives (COMAN bodies
and balls), different volume penetrations V; (i.e. intersec-
tion volume between two different bodies) and their time
derivative V; are computed.

For each V; # 0, a normal repulsive force
is computed as [|Fy;| = [LyVi[l + lyVi*,
where 1,y is set to 10° N/(m®) and I,y is set to
10% s/(m?). The tangential force is computed as Fr; =
—ullFy il tanh( Br [[vrill) (vri/llvrll), where u = 0.9,
Br = 10 s/m, tanh is the hyperbolic tangent function and
vr, is the relative tangential speed between the two bodies.

Finally, these forces are applied (with opposite directions)
at the center of the contact surface between the two bodies.

Appendix G Lack of fit

The sum of squares due to lack of fit (Smith and Rose, 1995)
analysis is presented here for one of the 11 key parameters
displayed in Figure 7.

First, the polynomial approximation of orders 0, 1, and
2 are computed, based on the least-squares method. For the
n (= 10) target speeds, the corresponding sum of squares
due to lack of fit is computed as SSLF = ) ", n( Y — ﬁ)z,
where n; (= 10) is the number of trials performed for each
speed, ¥; is the mean of these n; trials and Y, is the regres-
sion performed for this speed. Similarly, the sum of squares
due to pure error is computed as SSPE = ) 7, Z}il( Y —
1_6)2, where Yj; is the jth measure performed for the target
speed i.

Next, the corresponding F-distribution can be computed
as F =(SSLF/(n —p))/(SSPE/(N — n)), where p is the
number of parameters of the regression (1, 2, or 3, respec-
tively, for orders 0, 1, and 2) and N (= n - ;) is the total
number of measures.

Using the null hypothesis that the regression model is
adequate, the corresponding p-values are computed based
on this F-distribution value and on the following degrees of
freedom: n — p and N — n.





